BTS-GAN:基于MRI和条件对抗性网络的乳腺肿瘤计算机辅助分割系统

BTS-GAN: Computer-aided segmentation system for breast tumor using MRI and conditional adversarial networks

  • BTS-GAN:基于MRI和条件对抗性网络的乳腺肿瘤计算机辅助分割系统
    • 背景
    • 贡献
    • 实验
    • 方法
      • Parallel dilated convolution module(并行扩展卷积模块)
    • 损失函数

BTS-GAN:基于MRI和条件对抗性网络的乳腺肿瘤计算机辅助分割系统

Engineering Science and Technology, an International Journal 36 (2022) 101154

背景

乳腺肿瘤是诊断癌症最突出的指标之一。肿瘤的精确分割对于提高癌症检测的准确性至关重要。医生对核磁共振扫描的评估是耗时的,需要大量的人力和专业知识。此外,传统的医学分割方法经常需要先验信息或手动特征提取,从而导致主观诊断。

贡献

首先,我们为生成器使用了编码器和解码器之间具有跳过连接的编码器-解码器深度网络,以提高定位效率。其次,我们利用平行扩张卷积(PDC)模块来保留各种大小质量的特征,并有效地提取关于质量的边缘和内部纹理的信息。第三,在cGAN的损失函数中加入了一个额外的分类相关约束,以减轻基于分类的图像到图像(I2I)翻译任务中难以收敛的挑战。我们提出的模型的生成器侧学习检测肿瘤并构建二元掩模,而鉴别器学习区分基本真相和合成掩模,从而驱动生成器生成尽可能真实的掩模。
(1)本研究首次将cGAN架构与DCE-MRI图像一起用于乳腺肿瘤分割,
(2)PDC模块用于利用图像的多尺度和上下文信息,在不降低特征图分辨率的情况下,以不同的扩张率不断扩展感受野,
(3)我们在损失函数中添加了与分类相关的约束对cGAN进行正则化,使其更有效地解决医学图像的语义分割(SS)任务。
(4)我们的分割方法在公共数据集上取得了比U-Net更好的性能,并改进了U-Net。

实验

RIDER(用于评估治疗反应的参考图像数据库)该数据集包括对不同患者的DCE-MRI扫描,并进行了地面实况分割。地面实况分割部分已由领域专家手动标记。每次扫描的尺寸为288 x 288。数据集采用DICOM格式,每次扫描有60个切片。实验总共使用了500次带有真实面具的乳房MRI扫描,按80:20的比例分别用于训练(400)和测试(100)。由于数据集的数量相对较少,因此在该数据集的实验中采用了五倍交叉验证。增加了训练分割(通过水平和垂直随机翻转、旋转、变化尺度、伽玛校正),将数据集大小增加到3200。数据集已经过预处理,并被重塑为256 x 256的维度。
在这里插入图片描述
在这里插入图片描述

方法

我们提出的BTS-GAN是一种基于cGAN的监督学习方法,需要输入图像和目标图像成对的数据。假设“A”是我们的源图像,“B”是我们在分割问题中的基本事实(二进制掩码)。BTS-GAN的生成器试图生成应该类似于B的二进制掩码。相反,BTS-GAN的鉴别器网络学习生成的掩码是否与B相同,即,真掩码还是假掩码。生成器具有单个图像作为其输入和输出,而鉴别器接收来自生成器的生成输出及其对地实况作为输入,并尝试对该值进行评分。生成器的得分被计算为对抗性得分,该对抗性得分提供了学习和输出正确分割(二进制掩码)的潜力。这两个网络在最小-最大两人博弈论中相互竞争。
在这里插入图片描述

Parallel dilated convolution module(并行扩展卷积模块)

三个平行的卷积分支组成PDC模块。特别地,具有不同膨胀率的几个膨胀卷积级联在PDC模块的一个分支中,这提高了各种尺度目标的特征图的代表性。然后逐元素添加每个分支的输出,以实现多尺度特征融合。图3详细说明了PDC模块。在第一个分支中,使用简单的3 x 3卷积来实现特征采样。两个和三个3×3卷积运算分别级联在第二和第三分支中。在第二个分支中,基本的3×3卷积和速率为2的扩张卷积依次级联。最后一个分支中的三个3 x 3卷积层的收缩率分别为1、2和3。因此,PDC模块保留了图像中的多尺度和上下文信息,同时最大限度地减少了由单个扩张卷积引起的周围像素中的信息损失。
在这里插入图片描述

损失函数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/202187.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

tp8 使用rabbitMQ(1)简单队列

php8.0 使用 rabbitmq 要使用 3.6版本以上的&#xff0c; 并且还要开启 php.ini中的 socket 扩展 php think make:command SimpleMQProduce //创建一个生产者命令行 php think make:command SimpleMQConsumer //创建一个消费者命令行 生产者代码 <?php declare (strict_ty…

为何设计师都在用这个原型样机资源网站?

谈论原型样机素材模板&#xff0c;这个话题对设计师来说如同老朋友一般熟悉。设计师们在创作完毕后&#xff0c;为了更淋漓尽致地展示他们的设计成果&#xff0c;通常会将其放置在真实的样机素材模板中。这种原型样机素材可以让设计作品迅速且清晰地呈现在真实环境中。找到一个…

java游戏制作-飞翔的鸟游戏

一.准备工作 首先创建一个新的Java项目命名为“飞翔的鸟”&#xff0c;并在src中创建一个包命名为“com.qiku.bird"&#xff0c;在这个包内分别创建4个类命名为“Bird”、“BirdGame”、“Column”、“Ground”&#xff0c;并向需要的图片素材导入到包内。 二.代码呈现 …

【每日一题】2216.美化数组的最少删除数-2023.11.21

题目&#xff1a; 2216. 美化数组的最少删除数 给你一个下标从 0 开始的整数数组 nums &#xff0c;如果满足下述条件&#xff0c;则认为数组 nums 是一个 美丽数组 &#xff1a; nums.length 为偶数对所有满足 i % 2 0 的下标 i &#xff0c;nums[i] ! nums[i 1] 均成立 …

【Vue】自定义指令

hello&#xff0c;我是小索奇&#xff0c;精心制作的Vue系列持续发放&#xff0c;涵盖大量的经验和示例&#xff0c;如果对您有用&#xff0c;可以点赞收藏哈~ 自定义指令 自定义指令就是自己定义的指令&#xff0c;是对 DOM 元素进行底层操作封装 ,程序化地控制 DOM&#xff…

【开源】基于Vue.js的高校实验室管理系统的设计和实现

项目编号&#xff1a; S 015 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S015&#xff0c;文末获取源码。} 项目编号&#xff1a;S015&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容2.1 实验室类型模块2.2 实验室模块2.3 实…

2023 最新 PDF.js 在 Vue3 中的使用(长期更新)

因为自己写业务要定制各种 pdf 预览情况&#xff08;可能&#xff09;&#xff0c;所以采用了 pdf.js 而不是各种第三方封装库&#xff0c;主要还是为了更好的自由度。 一、PDF.js 介绍 官方地址 中文文档 PDF.js 是一个使用 HTML5 构建的便携式文档格式查看器。 pdf.js 是社区…

ABB机 器 人 操 作 培 训

目 录 1 培训手册介绍 ---------------------------------------------2 2 系统安全与环境保护 ---------------------------------------------3 3 机器人综述 ---------------------------------------------5 4 机器人示教 --------------------------------------------12…

自动解决IP冲突的问题 利用批处理更改末位IP循环+1直到网络畅通为止 解放双手 事半功倍

好久没出来写点什么了&#xff0c;难道今天有点时间&#xff0c;顺便把这两天碰到的问题出个解决方法吧。 这几天去客户那儿解决网络问题&#xff0c;因为客户的网络是固定的静态IP&#xff0c;因为没做MAC绑定&#xff0c;IP固定在本地电脑上&#xff0c;只要上不了网&#xf…

微信小程序面试题【100道】

文章目录 小程序面试题100问前言一、技术性问题1.有哪些参数传值的方法2.小程序修改数据值与Vue和React有什么差异3.如何实现下拉刷新与上拉加载4.bindtap和catchtap的区别是什么5.小程序有哪些导航API&#xff0c;它们各自的应用场景与差异区别是什么6.小程序中如何使用第三方…

python爬虫扣代码案例:某智能商业分析平台

声明&#xff1a; 该文章为学习使用&#xff0c;严禁用于商业用途和非法用途&#xff0c;违者后果自负&#xff0c;由此产生的一切后果均与作者无关 一、找出需要加密的参数 js运行 atob(‘aHR0cHM6Ly93d3cucWltYWkuY24vcmFuaw’) 拿到网址&#xff0c;F12打开调试工具&#…

拆解:淘宝客新玩法之微信淘礼金创建怎么做

最近看到一种新的淘宝客玩法&#xff0c;迫不及待的想分享给大家。微信公众号查券大家都不陌生&#xff0c;也有不少人都在做这个。最近看到有人在做微信公众号创建淘礼金。之所以说这个玩法新是因为目前大多数淘客还在做返利。返利有周期长、提现有门槛等痛点。 微信公众号创建…

BW4HANA 从头到脚 概念详解 ---- 持续更新中

1. 理解BW4HANA是干嘛的 好歹干了这么久的活了&#xff0c;从当初的啥也不懂到现在感觉啥都知道点&#xff0c;虽然知道的有限&#xff0c;但是也不是小白。渐渐的也知道了SAP开发的一些逻辑。本来咱是想当个BW的大牛的。但是现在感觉这条船要沉了是怎么回事。个人才稍微摸到点…

信息系统的安全保护等级的五个级别

信息系统的安全保护等级分为五级&#xff1a;第一级为自主保护级、第二级为指导保护级、第三级为监督保护级、第四级为强制保护级、第五级为专控保护级。 法律依据&#xff1a;《信息安全等级保护管理办法》第四条 信息系统的安全保护等级分为以下五级&#xff1a;   &#…

Python + Docker 还是 Rust + WebAssembly?

在不断发展的技术世界中&#xff0c;由大语言模型驱动的应用程序&#xff0c;通常被称为“LLM 应用”&#xff0c;已成为各种行业技术创新背后的驱动力。随着这些应用程序的普及&#xff0c;用户需求的大量涌入对底层基础设施的性能、安全性和可靠性提出了新的挑战。 Python 和…

基于单片机直流电机调速(proteus仿真+源程序)

一、系统方案 1、本设计采用这51单片机作为主控器。 2、转速值送到液晶1602显示。 3、按键设加减速&#xff0c;开始暂停、正反转。 二、硬件设计 原理图如下&#xff1a; 三、单片机软件设计 1、首先是系统初始化 en0; rw0; write_com(0x01); //lcd初始化 write_com(0x38)…

如何提高图片转excel的效果?(软件选择篇)

在日常的工作中&#xff0c;我们常常会遇到一些财务报表类的图片需要转换成可编辑的excel&#xff0c;但是&#xff0c;受各种条件的限制&#xff0c;常常只能通过手工录入这种原始的方式来实现&#xff0c;随着人工智能、深度学习以及网络技术的发展&#xff0c;这种原始的录入…

机器学习中的特征选择:方法和 Python 示例

布拉加德什桑达拉拉詹 一、说明 特征选择是机器学习流程中至关重要且经常被低估的步骤。它涉及从数据集中的原始特征集中选择最相关的特征&#xff08;输入变量或属性&#xff09;的子集。特征选择的重要性怎么强调都不为过&#xff0c;因为它直接影响机器学习模型的质量、效率…

网络知识学习(笔记二)

ios模型规定的网络模型一共有7层&#xff0c;但是实际使用过程中&#xff0c;4层的TCP/IP模型是经常使用的&#xff0c;网络知识学习笔记里面也是基于4层TCP/IP模型进行分析的&#xff0c;前面已经讲了&#xff1a;&#xff08;1&#xff09;物理层&#xff0c;&#xff08;2&a…

Kubernetes+Gitlab+Jenkins+ArgoCD多集群部署

KubernetesGitlabJenkinsArgoCD多集群部署 文章目录 KubernetesGitlabJenkinsArgoCD多集群部署1. KubernetesGitlabJenkinsArgoCD多集群部署2. 添加WebHooks自动触发3. Jenkins-构建-执行Shell4. 制作镜像及修改Yaml文件4.1 Dockerfile4.2 Build-Shell 5.自动部署Demo测试5.1 推…