opencv-图像平滑

高斯平滑
高斯平滑即采用高斯卷积核对图像矩阵进行卷积操作。高斯卷积核是一个近似服从高斯分布的矩阵,随着距离中心点的距离增加,其值变小。这样进行平滑处理时,图像矩阵中锚点处像素值权重大,边缘处像素值权重小。

import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
from cv2 import GaussianBlurimg = cv.imread(r"C:\Users\mzd\Desktop\opencv\images.jpg")
img_gauss = cv.GaussianBlur(img,(3,3),1)  #opencv中提供了GaussianBlur()函数来进行高斯平滑
cv.imshow("img",img)  #显示原图
cv.imshow("img_gauss",img_gauss)  #显示高斯平滑图
cv.waitKey(0)  #参数为 0,表示程序会无限期地等待用户按下键盘上的任意键。
cv.destroyAllWindows() #cv.destroyAllWindows() 是 OpenCV 中的一个函数调用,用于关闭所有通过 cv2.imshow() 打开的图像窗口。这个函数没有参数,调用它会关闭当前打开的所有窗口。GaussianBlur()

代码使用示例和效果如下:(相比于原图,平滑后图片变模糊)
在这里插入图片描述
cv2.GaussianBlur() 是 OpenCV 中用于对图像进行高斯模糊(Gaussian Blur)的函数。高斯模糊是一种常用的图像平滑技术,它可以有效地去除图像中的噪声,使图像变得更加平滑。

该函数的基本语法如下:

cv2.GaussianBlur(src, ksize, sigmaX[, dst[, sigmaY[, borderType]]])

参数说明:

  • src: 输入图像。
  • ksize: 高斯核的大小。通常为正的奇数(如3、5、7…)。高斯核的大小影响了模糊的程度。
  • sigmaX: X 方向上的高斯核标准差。如果设为0,则根据 ksize 计算。
  • dst(可选): 输出图像。
  • sigmaY(可选): Y 方向上的高斯核标准差。如果设为0,则与 sigmaX 相等。
  • borderType(可选): 边界处理的方式,通常为默认值 cv2.BORDER_DEFAULT

均值平滑

import cv2 as cv
import matplotlib.pyplot as plt
import numpy as npimg = cv.imread(r"C:\Users\mzd\Desktop\opencv\images.jpg")
img_blur = cv.blur(img,(3,5)) #均值平滑
# img_blur = cv.boxFilter(img,-1,(3,5))
cv.imshow("img",img)
cv.imshow("img_blur",img_blur)
cv.waitKey(0)#参数为 0,表示程序会无限期地等待用户按下键盘上的任意键
cv.imshow("img",img)
cv.destroyAllWindows()#cv.destroyAllWindows() 是 OpenCV 中的一个函数调用,用于关闭所有通过 cv2.imshow() 打开的图像窗口。这个函数没有参数,调用它会关闭当前打开的所有窗口。

在这里插入图片描述

cv2.blur() 是 OpenCV 中用于对图像进行均值模糊(Blur)的函数。均值模糊是一种简单的平滑技术,它通过取图像局部区域的平均值来模糊图像,从而实现去噪的效果。

该函数的基本语法如下:

cv2.blur(src, ksize[, dst[, anchor[, borderType]]])

参数说明:

  • src: 输入图像。
  • ksize: 决定了模糊程度的核的大小。通常为正的奇数(如3、5、7…)。
  • dst(可选): 输出图像。
  • anchor(可选): 锚点,默认值 (-1, -1) 表示核的中心。
  • borderType(可选): 边界处理的方式,通常为默认值 cv2.BORDER_DEFAULT

中值平滑
中值平滑也有核,但并不进行卷积计算,而是对核中所有像素值排序得到中间值,用该中间值来代替锚点值。opencv中利用medianBlur()来进行中值平滑,中值平滑特别适合用来去除椒盐噪声。

import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
import random
img = cv.imread(r"C:\Users\mzd\Desktop\opencv\images.jpg")
rows,cols = img.shape[:2]
#加入椒盐噪声
for i in range(100):r = random.randint(0,rows-1)c = random.randint(0,cols-1)img[r,c]=255
img_medianblur = cv.medianBlur(img,5)
cv.imshow("img",img)
cv.imshow("img_medianblur",img_medianblur)
cv.waitKey(0)
cv.destroyAllWindows()

在这里插入图片描述
cv2.medianBlur() 是 OpenCV 中用于对图像进行中值模糊的函数。中值模糊是一种非线性的平滑技术,它将每个像素的值替换为相应邻域中所有像素的中值。这种方法对于去除图像中的椒盐噪声等离群点非常有效。
该函数的基本语法如下:

cv2.medianBlur(src, ksize[, dst])

参数说明:

  • src: 输入图像。
  • ksize: 决定了模糊程度的核的大小。通常为正的奇数(如3、5、7…)。
  • dst(可选): 输出图像。

双边滤波
相比于上面几种平滑算法,双边滤波在平滑的同时还能保持图像中物体的轮廓信息。双边滤波在高斯平滑的基础上引入了灰度值相似性权重因子,所以在构建其卷积核核时,要同时考虑空间距离权重和灰度值相似性权重。在进行卷积时,每个位置的邻域内,根据和锚点的距离d构建距离权重模板,根据和锚点灰度值差异r构建灰度值权重模板,结合两个模板生成该位置的卷积核。

#coding:utf-8import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
import random
import math
img = cv.imread(r"C:\Users\mzd\Desktop\opencv\images.jpg")
img_bilateral = cv.bilateralFilter(img,0,0.2,40)
cv.imshow("img",img)
cv.imshow("img_bilateral",img_bilateral)
cv.waitKey(0)
cv.destroyAllWindows()

在这里插入图片描述
cv2.bilateralFilter() 是 OpenCV 中用于进行双边滤波的函数。双边滤波是一种非线性滤波技术,它考虑了像素之间的空间距离和像素值之间的灰度相似性。这使得双边滤波能够在平滑图像的同时保留边缘
该函数的基本语法如下:

cv2.bilateralFilter(src, d, sigmaColor, sigmaSpace[, dst[, borderType]])

参数说明:

  • src: 输入图像。
  • d: 领域直径。如果非正数,会从 sigmaSpace 计算。
  • sigmaColor: 色彩空间的标准差。较大的值表示在颜色空间中考虑更广泛的区域。
  • sigmaSpace: 坐标空间的标准差。较大的值表示在空间中考虑更广泛的区域。
  • dst(可选): 输出图像。
  • borderType(可选): 边界处理的方式,通常为默认值 cv2.BORDER_DEFAULT

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/203993.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PTA-6-48 使用面向对象的思想编写程序描述动物

题目: 使用面向对象的思想编写程序描述动物,说明: (1) 分析兔子和青蛙的共性,定义抽象的动物类,拥有一些动物共有的属性:名字、颜色、类别(哺乳类、非哺乳类)&#xff0c…

在Windows WSL (Linux的Windows子系统)上运行的Ubuntu如何更改主机名

在Windows 安装的Ubuntu,如何修改主机名。有列了两种方法,提供给大家参照。 文章目录 方法一:hostname指令修改方法二:修改配置文件修改hostnanmewsl.conf 文件配置选项推荐阅读 方法一:hostname指令修改 hostname指…

第 373 场 LeetCode 周赛题解

A 循环移位后的矩阵相似检查 模拟 class Solution { public:bool areSimilar(vector<vector<int>> &mat, int k) {int m mat.size(), n mat[0].size();k % n;auto g mat;for (int i 0; i < m; i)if (i & 1)rotate(mat[i].begin(), mat[i].begin() …

MySQL学习day03

一、SQL图形化界面工具 常用比较常用的图形化界面有sqlyog、mavicat、datagrip datagrip工具使用相当方便&#xff0c;功能比前面两种都要强大。 DataGrip工具的安装和使用请查看这篇文档&#xff1a;DataGrip 安装教程 DML-介绍 DML全称是Data Manipulation Language(数据…

什么是高级语言、机器语言、汇编语言?什么是编译和解释?

1、高级语言 计算机程序是一种让计算机执行特定任务的方法。程序是由程序员用一种称为编程语言的特殊语言编写的。编程语言有很多种&#xff0c;例如 C、C、Java、Python 等。这些语言被称为高级语言&#xff0c;因为它们更接近人类的自然语言&#xff0c;而不是计算机能够直接…

电脑便签功能在哪里找?电脑桌面便签怎么添加?

很多上班族在使用电脑办公的时候&#xff0c;都需要随手记录工作事项&#xff0c;例如记录共同工作时的想法、会议笔记、常用工作资料、每天待办的工作任务等事项&#xff0c;这时候使用纸质的笔记本来记录工作&#xff0c;不仅不方便随时查看和使用&#xff0c;而且在修改、删…

final关键字-Java

final关键字 一、使用场景1、当不希望类被继承时&#xff0c;可以用final修饰。2、当不希望父类的某个方法被子类覆盖/重写(override)时&#xff0c;可以用final修饰。3、当不希望类的的某个属性的值被修改&#xff0c;可以用final修饰。4、当不希望某个局部变量被修改&#xf…

Kibana部署

服务器 安装软件主机名IP地址系统版本配置KibanaElk10.3.145.14centos7.5.18042核4G软件版本&#xff1a;nginx-1.14.2、kibana-7.13.2-linux-x86_64.tar.gz 1. 安装配置Kibana &#xff08;1&#xff09;安装 [rootelk ~]# tar zxf kibana-7.13.2-linux-x86_64.tar.gz -C…

第十五届蓝桥杯(Web 应用开发)模拟赛 1 期-大学组(详细分析解答)

目录 1.动态的Tab栏 1.1 题目要求 1.2 题目分析 1.3 源代码 2.地球环游 2.1 题目要求 2.2 题目分析 2.3 源代码 3.迷惑的this 3.1 题目要求 3.2 题目分析 3.3 源代码 4.魔法失灵了 4.1 题目要求 4.2 题目分析 4.3 源代码 5.燃烧你的卡路里 5.1 题目要求 5.2…

SpectralGPT: Spectral Foundation Model 论文翻译1

遥感领域的通用大模型 2023.11.13在CVPR发表 原文地址&#xff1a;[2311.07113] SpectralGPT: Spectral Foundation Model (arxiv.org) 摘要 ​ 基础模型最近引起了人们的极大关注&#xff0c;因为它有可能以一种自我监督的方式彻底改变视觉表征学习领域。虽然大多数基础模型…

VAE模型及pytorch实现

VAE模型及pytorch实现 VAE模型推导部分最小化KL散度推导代码部分损失函数Encoder部分Decoder部分VAE整体架构 VAE问题参考资料 VAE&#xff08;变分自编码器&#xff09;是一种生成模型&#xff0c;结合了自编码器和概率图模型的思想。它通过学习数据的潜在分布&#xff0c;可以…

人工智能|机器学习——机器学习如何判断模型训练是否充分

一、查看训练日志 训练日志是机器学习中广泛使用的训练诊断工具&#xff0c;每个 epoch 或 iterator 结束后&#xff0c;在训练集和验证集上评估模型&#xff0c;并以折线图的形式显示模型性能和收敛状况。训练期间查看模型的训练日志可用于判断模型训练时的问题&#xff0c;例…

【Android知识笔记】性能优化专题(四)

App 线程优化 线程调度原理 任意时刻,只有一个线程占用CPU,处于运行状态多线程并发:轮流获取CPU使用权JVM负责线程调度:按照特定机制分配CPU使用权线程调度模型 分时调度模型:轮流获取、均分CPU时间抢占式调度模型:优先级高的获取,JVM采用Android线程调度 nice值:Proc…

Linux Nmap命令解析(Nmap指令)(功能:主机发现、ping扫描、arp扫描、端口扫描、服务版本检测、操作系统识别等)

文章目录 Linux Nmap 命令解析简介Nmap 的核心功能主机发现端口扫描服务版本检测OS 指纹识别&#xff08;操作系统指纹识别&#xff09;脚本扫描 安装 NmapNmap 命令结构Nmap 命令文档英文中文 主机发现Ping 扫描ARP 扫描关于nmap -PR&#xff08;ARP Ping Scan&#xff09;和n…

Unity 关于生命周期函数的一些认识

Unity 生命周期函数主要有以下一些&#xff1a; Awake(): 在脚本被加载时调用。用于初始化对象的状态和引用。 OnEnable(): 在脚本组件被启用时调用。在脚本组件被激活时执行一次&#xff0c;以及在脚本组件被重新激活时执行。 Reset(): 在脚本组件被重置时调用。用于重置脚本…

卷积神经网络(CNN)识别验证码

文章目录 一、前言二、前期工作1. 设置GPU&#xff08;如果使用的是CPU可以忽略这步&#xff09;2. 导入数据3. 查看数据4.标签数字化 二、构建一个tf.data.Dataset1.预处理函数2.加载数据3.配置数据 三、搭建网络模型四、编译五、训练六、模型评估七、保存和加载模型八、预测 …

Windows下Linkis1.5DSS1.1.2本地调试

1 Linkis: 参考&#xff1a; 单机部署 | Apache Linkis技术分享 | 在本地开发调试Linkis的源码 (qq.com)DataSphere Studio1.0本地调试开发指南 - 掘金 (juejin.cn) 1.1 后端编译 参考【后端编译 | Apache Linkis】】 修改linkis模块下pom.xml,将mysql.connetor.scope修改…

基于命令行模式设计退款请求处理

前言 这篇文章的业务背景是基于我的另一篇文章: 对接苹果支付退款退单接口-CSDN博客 然后就是说设计模式是很开放的东西,可能我觉得合适,你可能觉得不合适,这里只是做下讨论,没有一定要各位同意的意思.... 相关图文件 这里我先把相关的图文件放上来,可能看着会比较清晰点 代码逻…

从零开始的c语言日记day37——数组指针练习

一、 取地址数组储存在了*p里&#xff0c;里面储存的是整个数组的地址但本质也是第一个元素的地址解引用后1为4个字节所以就可以打印数组了。但一般不用这种方法 这样更方便一些 打印多维数组 如果不用这样传参&#xff0c;用指针传参怎么做呢&#xff1f; Main里函数的arr表示…

第1章 爬虫基础

目录 1. HTTP 基本原理1.1 URI 和 URL1.2 HTTP 和 HTTPS1.3 请求1.3.1 请求方法1.3.2 请求的网址1.3.3 请求头1.3.4 请求体 1.4 响应1.4.1 响应状态码1.4.2 响应头1.4.3 响应体 2. Web 网页基础2.1 网页的组成2.1.1 HTML2.1.2 CSS2.1.3 JavaScript 2.2 网页的结构2.3 节点树及节…