Redis 主库挂了,如何不间断服务?

目录

1、哨兵机制的基本流程

2、主观下线和客观下线

3、如何选定新的主库?

总结


        // 你只管前行,剩下的交给时间

        在 reids 主从库集群模式下,如果从库发生故障了,客户端可以继续向主库或其他从库发送请求,进行相关的操作,但是如果主库发生故障了,那就直接会影响到从库的同步,因为从库没有相应的主库可以进行数据复制操作了。// 没有主库,从库无法进行数据同步,客户端无法进行写

        而且,如果客户端发送的都是读操作请求,那还可以由从库继续提供服务,这在只读的业务场景下还能被接受。但是,一旦有写操作请求了,按照主从库模式下的读写分离要求,需要由主库来完成写操作。此时,也没有实例可以来服务客户端的写操作请求了,如下图所示:

        无论是写服务中断,还是从库无法进行数据同步,都是不能接受的。所以,如果主库挂了,我们就需要运行一个新主库,比如说把一个从库切换为主库,把它当成主库。这就涉及到三个问题:

  1. 主库真的挂了吗?
  2. 该选择哪个从库作为主库?
  3. 怎么把新主库的相关信息通知给从库和客户端呢?

        这就要提到哨兵机制了。在 Redis 主从集群中,哨兵机制是实现主从库自动切换的关键机制,它有效地解决了主从复制模式下故障转移的这三个问题// 哨兵是用来解决主从切换问题的

1、哨兵机制的基本流程

        哨兵其实就是一个运行在特殊模式下的 Redis 进程,主从库实例运行的同时,它也在运行。哨兵主要负责的就是三个任务:监控、选主(选择主库)和通知

        我们先看监控。监控是指哨兵进程在运行时,周期性地给所有的主从库发送 PING 命令,检测它们是否仍然在线运行。如果从库没有在规定时间内响应哨兵的 PING 命令,哨兵就会把它标记为“下线状态”;同样,如果主库也没有在规定时间内响应哨兵的 PING 命令,哨兵就会判定主库下线,然后开始自动切换主库的流程。// 心跳检测

        这个流程首先是执行哨兵的第二个任务,选主。主库挂了以后,哨兵就需要从很多个从库里,按照一定的规则选择一个从库实例,把它作为新的主库。这一步完成后,现在的集群里就有了新主库。

        然后,哨兵会执行最后一个任务:通知。在执行通知任务时,哨兵会把新主库的连接信息发给其他从库,让它们执行 replicaof 命令,和新主库建立连接,并进行数据复制。同时,哨兵会把新主库的连接信息通知给客户端,让它们把请求操作发到新主库上。// 通知从库,客户端

        在这三个任务中,通知任务相对来说比较简单,哨兵只需要把新主库信息发给从库和客户端,让它们和新主库建立连接就行,并不涉及决策的逻辑。但是,在监控和选主这两个任务中,哨兵需要做出两个决策:// 谁挂了?应该选谁?

  • 在监控任务中,哨兵需要判断主库是否处于下线状态;
  • 在选主任务中,哨兵也要决定选择哪个从库实例作为主库。

        redis 哨兵对主库的下线判断有“主观下线”和“客观下线”两种。那么,为什么会存在两种判断呢?它们的区别和联系是什么呢?

2、主观下线和客观下线

        什么是“主观下线”。

        哨兵进程会使用 PING 命令检测它自己和主、从库的网络连接情况,用来判断实例的状态。如果哨兵发现主库或从库对 PING 命令的响应超时了,那么,哨兵就会先把它标记为“主观下线”。

        如果检测的是从库,那么,哨兵简单地把它标记为“主观下线”就行了,因为从库的下线影响一般不太大,集群的对外服务不会间断。

        但是,如果检测的是主库,那么,哨兵还不能简单地把它标记为“主观下线”,开启主从切换。因为很有可能存在这么一个情况:那就是哨兵误判了,其实主库并没有故障。可是,一旦启动了主从切换,后续的选主和通知操作都会带来额外的计算和通信开销// 如何准确的进行判断,多次验证?

        为了避免这些不必要的开销,要特别注意误判的情况。

        首先,我们要知道啥叫误判。很简单,就是主库实际并没有下线,但是哨兵误以为它下线了。误判一般会发生在集群网络压力较大、网络拥塞,或者是主库本身压力较大的情况下

        一旦哨兵判断主库下线了,就会开始选择新主库,并让从库和新主库进行数据同步,这个过程本身就会有开销,例如,哨兵要花时间选出新主库,从库也需要花时间和新主库同步。而在误判的情况下,主库本身根本就不需要进行切换的,所以这个过程的开销是没有价值的。正因为这样,我们需要判断是否有误判,以及减少误判。// 误判会带来额外的开销,且切换无价值

        那怎么减少误判呢?在日常生活中,当我们要对一些重要的事情做判断的时候,经常会和家人或朋友一起商量一下,然后再做决定。

        哨兵机制也是类似的,它通常会采用多实例组成的集群模式进行部署,这也被称为哨兵集群。引入多个哨兵实例一起来判断,就可以避免单个哨兵因为自身网络状况不好,而误判主库下线的情况。同时,多个哨兵的网络同时不稳定的概率较小,由它们一起做决策,误判率也能降低。// 哨兵集群,少数服从多数

        在判断主库是否下线时,不能由一个哨兵说了算,只有大多数的哨兵实例,都判断主库已经“主观下线”了,主库才会被标记为“客观下线”,这个叫法也是表明主库下线成为一个客观事实了。这个判断原则就是:少数服从多数。同时,这会进一步触发哨兵开始主从切换流程。// 集群做决定都是少数服从多数

        简单来说,“客观下线”的标准就是,当有 N 个哨兵实例时,最好要有 N/2 + 1 个实例判断主库为“主观下线”,才能最终判定主库为“客观下线”。这样一来,就可以减少误判的概率,也能避免误判带来的无谓的主从库切换。(当然,有多少个实例做出“主观下线”的判断才可以,可以由 Redis 管理员自行设定)。

        借助于多个哨兵实例的共同判断机制,我们就可以更准确地判断出主库是否处于下线状态。如果主库的确下线了,哨兵就要开始下一个决策过程了,即从许多从库中,选出一个从库来做新主库。

3、如何选定新的主库?

        一般来说,我把哨兵选择新主库的过程称为“筛选 + 打分”。简单来说,我们在多个从库中,先按照一定的筛选条件,把不符合条件的从库去掉。然后,我们再按照一定的规则,给剩下的从库逐个打分,将得分最高的从库选为新主库,如下图所示:

        在刚刚的这段话里,需要注意的是两个“一定”,现在,我们要考虑这里的“一定”具体是指什么。

        首先来看筛选的条件// 首先从网络开始,选择同步数据最多的那个从库?(打分项)

        一般情况下,我们肯定要先保证所选的从库仍然在线运行。不过,在选主时从库正常在线,这只能表示从库的现状良好,并不代表它就是最适合做主库的。

        设想一下,如果在选主时,一个从库正常运行,我们把它选为新主库开始使用了。可是,很快它的网络出了故障,此时,我们就得重新选主了。这显然不是我们期望的结果。

        所以,在选主时,除了要检查从库的当前在线状态,还要判断它之前的网络连接状态。如果从库总是和主库断连,而且断连次数超出了一定的阈值,我们就有理由相信,这个从库的网络状况并不是太好,就可以把这个从库筛掉了。

        具体怎么判断呢?你使用配置项 down-after-milliseconds * 10。其中,down-after-milliseconds 是我们认定主从库断连的最大连接超时时间。如果在 down-after-milliseconds 毫秒内,主从节点都没有通过网络联系上,我们就可以认为主从节点断连了。如果发生断连的次数超过了 10 次,就说明这个从库的网络状况不好,不适合作为新主库。// 判断网络的断连次数

        好了,这样我们就过滤掉了不适合做主库的从库,完成了筛选工作。

        接下来就要给剩余的从库打分了。我们可以分别按照三个规则依次进行三轮打分,这三个规则分别是从库优先级、从库复制进度以及从库 ID 号。只要在某一轮中,有从库得分最高,那么它就是主库了,选主过程到此结束。如果没有出现得分最高的从库,那么就继续进行下一轮。

        第一轮:优先级最高的从库得分高。

        用户可以通过 slave-priority 配置项,给不同的从库设置不同优先级。比如,你有两个从库,它们的内存大小不一样,你可以手动给内存大的实例设置一个高优先级。在选主时,哨兵会给优先级高的从库打高分,如果有一个从库优先级最高,那么它就是新主库了。如果从库的优先级都一样,那么哨兵开始第二轮打分。// 手动干预优先

        第二轮:和旧主库同步程度最接近的从库得分高。

        这个规则的依据是,如果选择和旧主库同步最接近的那个从库作为主库,那么,这个新主库上就有最新的数据。// 选取同步数据最全的数据库

        如何判断从库和旧主库间的同步进度呢?

        主从库同步时有个命令传播的过程。在这个过程中,主库会用 master_repl_offset 记录当前的最新写操作在 repl_backlog_buffer 中的位置,而从库会用 slave_repl_offset 这个值记录当前的复制进度。// repl_backlog_buffer  环形缓冲区,记录主库和从库的数据偏移量

        此时,我们想要找的从库,它的 slave_repl_offset 需要最接近 master_repl_offset。如果在所有从库中,有从库的 slave_repl_offset 最接近 master_repl_offset,那么它的得分就最高,可以作为新主库。

        就像下图所示,旧主库的 master_repl_offset 是 1000,从库 1、2 和 3 的 slave_repl_offset 分别是 950、990 和 900,那么,从库 2 就应该被选为新主库。

        当然,如果有两个从库的 slave_repl_offset 值大小是一样的(例如,从库 1 和从库 2 的 slave_repl_offset 值都是 990),我们就需要给它们进行第三轮打分了。// 从库数据都一致,进入第三轮

        第三轮:ID 号小的从库得分高。

        每个实例都会有一个 ID,这个 ID 就类似于这里的从库的编号。目前,Redis 在选主库时,有一个默认的规定:在优先级和复制进度都相同的情况下,ID 号最小的从库得分最高,会被选为新主库// 这是必须得出一个结果了

        到这里,新主库就被选出来了,“选主”这个过程就完成了。我们再回顾下这个流程。首先,哨兵会按照在线状态、网络状态,筛选过滤掉一部分不符合要求的从库,然后,依次按照优先级、复制进度、ID 号大小再对剩余的从库进行打分,只要有得分最高的从库出现,就把它选为新主库。// 总结

总结

        哨兵机制,是实现 Redis 不间断服务的重要保证。具体来说,主从集群的数据同步,是数据可靠的基础保证;而在主库发生故障时,自动的主从切换是服务不间断的关键支撑。

        Redis 的哨兵机制自动完成了以下三大功能,从而实现了主从库的自动切换,可以降低 Redis 集群的运维开销:

  1. 监控主库运行状态,并判断主库是否客观下线;
  2. 在主库客观下线后,选取新主库;
  3. 选出新主库后,通知从库和客户端。

        为了降低误判率,在实际应用时,哨兵机制通常采用多实例的方式进行部署,多个哨兵实例通过“少数服从多数”的原则,来判断主库是否客观下线。一般来说,我们可以部署三个哨兵,如果有两个哨兵认定主库“主观下线”,就可以开始切换过程。当然,如果你希望进一步提升判断准确率,也可以再适当增加哨兵个数,比如说使用五个哨兵。

        但是,使用多个哨兵实例来降低误判率,其实相当于组成了一个哨兵集群,我们会因此面临着一些新的挑战,例如:

  1. 哨兵集群中有实例挂了,怎么办,会影响主库状态判断和选主吗?
  2. 哨兵集群多数实例达成共识,判断出主库“客观下线”后,由哪个实例来执行主从切换呢?

        要搞懂这些问题,就不得不提哨兵集群了,在后续文章中,我会继续介绍哨兵集群的机制和问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/204526.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

5W2H分析法

5W2H分析法 5W2H分析法又叫七问分析法。 模型介绍 简单、方便,易于操作的思考(框架)模型,问题分析模型,它可以帮助我们保证思考的严谨与全面,也能给人启发,有着广泛的应用: 提问-可…

Spring之AOP理解与应用(更新中)

1. AOP的认识 面向切面编程:基于OOP基础之上新的编程思想,OOP面向的主要对象是类,而AOP面向的主要对象是切面,在处理日志、安全管理、事务管理等方面有非常重要的作用。AOP是Spring中重要的核心点,AOP提供了非常强…

别太担心,人类只是把一小部分理性和感性放到了AI里

尽管人工智能(AI)在许多方面已经取得了重大进展,但它仍然无法完全复制人类的理性和感性。AI目前主要侧重于处理逻辑和分析任务,而人类则具有更复杂的思维能力和情感经验。 人类已经成功地将一些可以数据化和程序化的理性和感性特征…

音频采集的相关基础知识

本文引注: https://zhuanlan.zhihu.com/p/652629744 1.麦克风的种类 (1)模拟麦克风 ECM麦克风:驻极体电容麦克风(ECM),典型的汽车ECM麦克风是一种将ECM单元与小型放大器电路整合在单个外壳中的装置。放大器提供一个模拟信号,其电压电平允许…

迷你洗衣机哪个牌子好又实惠?口碑最好的小型洗衣机

不得不说洗衣机的发明解放了我们的双手,而我们从小到大就有这个意识,贴身衣物不可以和普通的衣服一起丢进去洗衣机一起,而内衣裤上不仅有肉眼看见的污渍还有手上根本无法消灭的细菌,但是有一款专门可以将衣物上的细菌杀除的内衣洗…

简介vue

目录 一、介绍 渐进式框架​ 单文件组件​ 选项式 API (Options API)​ 组合式 API (Composition API)​ 该选哪一个?​ 创建一个 Vue 应用 应用实例​ 根组件​ DOM 中的根组件模板 应用配置​ 多个应用实例​ 一、介绍 Vue (发音为 /vjuː/&#xff…

CI/CD 构建中能保护好 SSHKEY吗?

目录 背景 方案 编码存储 逐行存储 合并存储 打马赛克 结论 背景 使用极狐GitLab CI/CD,在部署方面,主要有两种方式: 部署到K8S集群 Push模式:流水线通过kubectl执行命令部署,这需要把K8S的权限给流水线&#xf…

2. 两数相加

给你两个 非空 的链表,表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的,并且每个节点只能存储 一位 数字。 请你将两个数相加,并以相同形式返回一个表示和的链表。 你可以假设除了数字 0 之外,这两个数都不会以 0 …

C#面向对象

过程类似函数只能执行没有返回值 函数不仅能执行,还可以返回结果 1、面向过程 a 把完成某一需求的所有步骤 从头到尾 逐步实现 b 根据开发需求,将某些 功能独立 的代码 封装 成一个又一个 函数 c 最后完成的代码就是顺序的调用不同的函数 特点 1、…

vue项目多个不同的服务器请求地址管理

vue项目多个不同的服务器请求地址管理 在vue项目开发过程中,获取不同的数据可能会出现需要请求多个不同服务器地址的域名,这个时候需要对不同域名的请求地址进行管理以及跨域的代理。 一、单服务器域名地址的跨域代理和请求配置: 跨域配置&…

【算法萌新闯力扣】:卡牌分组

力扣热题:卡牌分组 一、开篇 今天是备战蓝桥杯的第22天。这道题触及到我好几个知识盲区,以前欠下的债这道题一并补齐,哈希表的遍历、最大公约数与最小公倍数,如果你还没掌握,这道题练起来! 二、题目链接:…

为Oracle链接服务器使用分布式事务

1 现象 在SQL Server中创建指向Oracle的链接服务器,SQL语句在事务中向链接服务器插入数据。返回链接服务器无法启动分布式事务的报错。 2 解决 在Windows平台下,SQL Server依赖分布式事务协调器(MSDTC)来使用分布式事务&#xff0…

【ArcGIS Pro微课1000例】0038:基于ArcGIS Pro的人口密度分析与制图

文章目录 一、人口密度二、人口密度分析1. 点密度分析2. 核密度分析三、结果比对一、人口密度 人口密度是指单位土地面积上居住的人口数,通常以每平方千米或每公顷内的常住人口为单位计算。人口密度同资源、经济密切结合,因此,科学准确地分析人口密度的分布情况,对合理制定…

亚信科技AntDB数据库与库瀚存储方案完成兼容性互认证

近日,亚信科技AntDB数据库与苏州库瀚信息科技有限公司自主研发的RISC-V数据库存储解决方案进行了产品兼容测试。经过双方团队的严格测试,亚信科技AntDB数据库与库瀚数据库存储解决方案完全兼容、运行稳定。除高可用性测试外,双方进一步开展TP…

0 NLP: 数据获取与EDA

0数据准备与分析 二分类任务,正负样本共计6W; 数据集下载 https://github.com/SophonPlus/ChineseNlpCorpus/raw/master/datasets/online_shopping_10_cats/online_shopping_10_cats.zip 样本的分布 正负样本中评论字段的长度 ,超过500的都…

Redis深入理解-主从架构下内核数据结构、主从同步以及主节点选举

Redis 主从挂载后的内核数据结构分析 主节点中,会通过 clusteNode 中的 slaves 来记录该主节点包含了哪些从节点,这个 slaves 是一个指向 *clusterNode[] 数组的数据结构从节点中,会通过 clusterNode 中的 slaveof 来记录该从节点属于哪个主…

webpack项目工程初始化

一、初始化项目 默认系统已经安装node //初始化 pnpm init//安装webpack pnpm i -D webpack webpack-cli 新建一个index.html的入口文件 新建一个src文件存放js代码,src里面新建一个index.js package.josn配置打包命令 {"name": "webpack-cs&q…

【数据结构】八大排序(二)

目录 前言: 冒泡排序 冒泡排序代码实现 冒泡排序特性总结 快速排序 单趟排序hoare版本 单趟排序挖坑法 单趟排序快慢指针法 快速排序整体概览 快排的优化 三数取中法选key 小区间优化 前言: 上文介绍了直接插入排序,希尔排序&…

2 线、3 线和 4 线 RTD 配置之间有什么区别?

电阻温度检测器 (RTD) 是温度传感器的一种,由于其准确性、可重复性和稳定性而广泛应用于各种工业应用。这些设备通过感测材料温度变化时电阻的变化来测量温度。 RTD 探头有多种配置,包括 2 线、3 线和 4 线型号。这些类型之间存在显着差异,在…

浅析函数防抖节流

防抖和节流都是前端开发中常用的优化性能的技术。 一、定义 防抖: 防抖指的是在事件触发后,在规定的时间内若再次触发,则重新计时,直到规定时间内没有再次触发事件,才执行事件处理。这样可以避免在短时间内频繁地触发…