【深度学习】Transformer技术报告:架构与原理

【深度学习】Transformer 技术报告:架构与原理

    • 一、引言
    • 二、Transformer 的基本架构
      • 2.1 总体架构
      • 2.2 编码器(Encoder)
      • 2.3 解码器(Decoder)
      • 2.4 输入嵌入与位置编码
    • 三、Transformer 的关键特性
    • 四、应用场景
    • 五、总结

一、引言

Transformer 是一种基于注意力机制(Attention Mechanism)的深度学习架构,最初由 Vaswani 等人在 2017 年的论文《Attention Is All You Need》中提出。它彻底改变了自然语言处理(NLP)领域,成为许多语言模型和任务的核心架构。Transformer 的设计理念是摒弃传统的循环神经网络(RNN)及其变体(如 LSTM 和 GRU),转而通过并行计算和注意力机制高效处理序列数据。

二、Transformer 的基本架构

2.1 总体架构

Transformer 采用编码器 - 解码器(Encoder-Decoder)架构,主要用于处理序列到序列的任务,如机器翻译、文本生成等。编码器负责将输入序列编码为上下文表示,解码器则基于这些上下文信息生成输出序列。整个架构由以下部分组成:

编码器(Encoder):由多个相同的层(通常为 6 层)堆叠而成,每层包含两个子层。

解码器(Decoder):同样由多个相同的层堆叠而成,每层包含三个子层。

输入嵌入与位置编码:为输入序列提供初始表示,并保留序列的顺序信息。

输出层:将解码器的输出转换为目标序列。

2.2 编码器(Encoder)

编码器由多个相同的层组成,每层包含两个子层:

多头自注意力层(Multi-Head Self-Attention Layer)

作用:允许模型在处理输入序列时,同时关注序列中的所有位置,捕捉词与词之间的关系。

机制:将输入序列分割成多个 “头”(Head),每个头独立计算注意力权重,然后将所有头的输出拼接起来。这种设计能够捕捉到输入序列中不同子空间的特征。

公式

Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V Attention(Q,K,V)=softmax(dk QKT)V

其中,Q、K、V 分别代表查询(Query)、键(Key)和值(Value), d k d_k dk是键向量的维度。

多头注意力:

MultiHead ( Q , K , V ) = Concat ( head 1 , … , head h ) W O \text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, \dots, \text{head}_h)W^O MultiHead(Q,K,V)=Concat(head1,,headh)WO

其中, head i = Attention ( Q W i Q , K W i K , V W i V ) \text{head}_i=\text{Attention}(QW_i^Q,KW_i^K,VW_i^V) headi=Attention(QWiQ,KWiK,VWiV),h 是头的数量。

前馈网络层(Feed Forward Network Layer)

作用:对多头自注意力层的输出进行进一步处理。

结构:一个简单的全连接网络,包含两个线性层和一个非线性激活函数(如 ReLU)。

公式

FFN ( x ) = max ⁡ ( 0 , x W 1 + b 1 ) W 2 + b 2 \text{FFN}(x) = \max(0, xW_1 + b_1)W_2 + b_2 FFN(x)=max(0,xW1+b1)W2+b2

残差连接与层归一化

残差连接:将每个子层的输入直接加到输出上,避免梯度消失问题。

层归一化:对每个子层的输出进行归一化处理,稳定训练过程。

2.3 解码器(Decoder)

解码器同样由多个相同的层组成,每层包含三个子层:

掩码多头自注意力层(Masked Multi-Head Self-Attention Layer)

作用:处理解码器的输入序列,防止解码器在生成过程中看到未来的信息(即 “掩码” 操作)。

机制:与编码器的多头自注意力层类似,但在计算注意力时,对当前词之后的词施加掩码(Mask),使其注意力权重为零。

公式

MaskedAttention ( Q , K , V ) = softmax ( Q K T d k + mask ) V \text{MaskedAttention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}} + \text{mask}\right)V MaskedAttention(Q,K,V)=softmax(dk QKT+mask)V

编码器 - 解码器注意力层(Encoder-Decoder Attention Layer)

作用:将解码器的输入与编码器的输出进行交互,获取上下文信息。

机制:解码器的查询(Query)与编码器的键(Key)和值(Value)进行注意力计算,从而将编码器的上下文信息融入解码器的输出。

前馈网络层

作用:与编码器中的前馈网络类似,进一步处理信息。

解码器的输出经过线性层和 softmax 函数,生成最终的预测结果。

2.4 输入嵌入与位置编码

输入嵌入(Input Embedding)

作用:将输入序列中的每个词转换为固定维度的向量表示。

机制:通过查找表(Lookup Table)将每个词映射到一个预训练的嵌入向量。

位置编码(Positional Encoding)

作用:为模型提供序列中每个词的位置信息,因为 Transformer 不依赖于序列的顺序。

机制:位置编码是一个固定长度的向量,与输入嵌入相加,为模型提供位置信息。

公式

PE ( p o s , 2 i ) = sin ⁡ ( pos 1000 0 2 i / d model ) \text{PE}(pos, 2i) = \sin\left(\frac{\text{pos}}{10000^{2i/d_{\text{model}}}}\right) PE(pos,2i)=sin(100002i/dmodelpos)

PE ( p o s , 2 i + 1 ) = cos ⁡ ( pos 1000 0 2 i / d model ) \text{PE}(pos, 2i+1) = \cos\left(\frac{\text{pos}}{10000^{2i/d_{\text{model}}}}\right) PE(pos,2i+1)=cos(100002i/dmodelpos)

其中,pos 是词的位置,i 是维度, d model d_{\text{model}} dmodel是模型的维度。

三、Transformer 的关键特性

并行化处理:与 RNN 不同,Transformer 可以并行处理整个序列,大大提高了训练效率。

长距离依赖建模:注意力机制允许模型直接捕捉序列中任意两个词之间的关系,解决了 RNN 在长序列中信息丢失的问题。

多头注意力机制:通过多个 “头” 从不同角度捕捉序列特征,增强了模型的表达能力。

残差连接与层归一化:提高了模型的训练稳定性,避免了深层网络中的梯度消失问题。

四、应用场景

Transformer 架构在自然语言处理领域取得了巨大成功,广泛应用于以下任务:

机器翻译:将一种语言的文本翻译成另一种语言。

文本生成:如聊天机器人、写作助手等。

文本分类:对文本进行情感分析、主题分类等。

问答系统:从文本中提取答案或生成回答。

语言模型:如 GPT、BERT 等预训练语言模型,基于 Transformer 架构开发。

五、总结

Transformer 架构凭借其高效的并行计算能力和强大的长距离依赖建模能力,彻底改变了自然语言处理领域。它不仅在学术研究中取得了显著成果,还在工业界得到了广泛应用。未来,Transformer 架构有望在更多领域发挥重要作用,推动人工智能技术的发展。

希望这份报告对你有帮助!如果你有任何问题或需要进一步补充 Transformer 在其他领域的应用实例、技术优化方向等内容,欢迎随时告诉我。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/20508.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32 HAL库 UART串口发送数据实验

一、实验目标 通过STM32的UART串口发送字符串数据到PC端串口调试助手,验证通信功能。 二、硬件准备 主控芯片:STM32F103C8T6。 串口模块:USB转TTL模块。 接线说明: STM32的USART1_TX(PA9) → USB-TTL模…

一.AI大模型开发-初识机器学习

机器学习基本概念 前言 本文主要介绍了深度学习基础,包括机器学习、深度学习的概念,机器学习的两种典型任务分类任务和回归任务,机器学习中的基础名词解释以及模型训练的基本流程等。 一.认识机器学习 1.人工智能和机器学习 人工智能&am…

冒险岛079 V8 整合版源码搭建教程+IDEA启动

今天教大家来部署下一款超级怀旧游戏冒险岛,冒险岛源码是开源的,但是开源的代码会有各种,本人进行了加工整合,并且用idea进行了启动测试,经过修改后没有任何问题。 启动截图 后端控制台 前端游戏界面 声明 冒险岛源码…

【操作系统】操作系统概述

操作系统概述 1.1 操作系统的概念1.1.1 操作系统定义——什么是OS?1.1.2 操作系统作用——OS有什么用?1.1.3 操作系统地位——计算机系统中,OS处于什么地位?1.1.4 为什么学操作系统? 1.2 操作系统的历史1.2.1 操作系统…

单元测试junit5

一、idea 安装自动化生成插件jcode5 安装可能不成功&#xff0c;尝试多次安装&#xff1b; 安装成功后&#xff0c;重启idea&#xff0c;再次确认安装是否成功&#xff1b; 二、在需要生成单元测试代码的模块的pom中引入依赖 ......<parent><groupId>org.springf…

mysql主从配置(2025)

一、配置主服务器 编辑主mysql配置文件my.cnf&#xff08;vim /etc/my.cnf&#xff09;&#xff0c;在[mysqld]下添加 [mysqld] # 配置主ID,必须在所有参与主从复制的数据库保证唯一 server-id1 # 打开二进制日志 log-bin/var/lib/mysql/mysql-bin.log # 只允许同步ente_dat…

6.2.图的存储结构-邻接矩阵法

一.邻接矩阵法存储不带权图&#xff1a; 结点不带权值&#xff1a; 1.左图的无向图中&#xff0c;A到B直达的有一条路&#xff0c;所以A行B列的值为1&#xff1b; 左图的无向图中&#xff0c;A到F没有直达的路&#xff0c;所以A行F列的值为0&#xff1b; 结论&#xff1a;无…

1-知识图谱-概述和介绍

知识图谱&#xff1a;浙江大学教授 陈华军 知识图谱 1课时 http://openkg.cn/datasets-type/ 知识图谱的价值 知识图谱是有什么用&#xff1f; 语义搜索 问答系统 QA问答对知识图谱&#xff1a;结构化图 辅助推荐系统 大数据分析系统 自然语言理解 辅助视觉理解 例…

【C语言】C语言 食堂自动化管理系统(源码+数据文件)【独一无二】

&#x1f449;博__主&#x1f448;&#xff1a;米码收割机 &#x1f449;技__能&#x1f448;&#xff1a;C/Python语言 &#x1f449;专__注&#x1f448;&#xff1a;专注主流机器人、人工智能等相关领域的开发、测试技术。 【C语言】C语言 食堂自动化管理系统&#xff08;源…

C#之上位机开发---------C#通信库及WPF的简单实践

〇、上位机&#xff0c;分层架构 界面层 要实现的功能&#xff1a; 展示数据 获取数据 发送数据 数据层 要实现的功能&#xff1a; 转换数据 打包数据 存取数据 通信层 要实现的功能&#xff1a; 打开连接 关闭连接 读取数据 写入数据 实体类 作用&#xff1a; 封装数据…

网络编程(24)——实现带参数的http-get请求

文章目录 二十四、day241. char 转为16进制2. 16进制转为 char3. URL 编码函数4. URL 解码函数5. 实现 get 请求参数的解析6. 测试 二十四、day24 我们在前文通过beast实现了http服务器的简单搭建&#xff0c;但是有很多问题我们并没有解决。 在前文中&#xff0c;我们的 get…

机器学习_18 K均值聚类知识点总结

K均值聚类&#xff08;K-means Clustering&#xff09;是一种经典的无监督学习算法&#xff0c;广泛应用于数据分组、模式识别和降维等领域。它通过将数据划分为K个簇&#xff0c;使得簇内相似度高而簇间相似度低。今天&#xff0c;我们就来深入探讨K均值聚类的原理、实现和应用…

LeetCode1287

LeetCode1287 目录 题目描述示例思路分析代码段代码逐行讲解复杂度分析总结的知识点整合总结 题目描述 给定一个非递减的整数数组 arr&#xff0c;其中有一个元素恰好出现超过数组长度的 25%。请你找到并返回这个元素。 示例 示例 1 输入: arr [1, 2, 2, 6, 6, 6, 6, 7,…

恒创科技:如何重新启动 Windows 服务器

重新启动 Windows 服务器对于应用更新、解决问题和维护系统性能至关重要。定期重新启动有助于确保服务器运行最新软件、解决冲突并清除临时文件。本教程将介绍如何使用不同的方法重新启动 Windows 服务器。 注意&#xff1a;重新启动服务器之前保存所有工作&#xff0c;以避免丢…

Django ModelForm使用(初学)

1.目的是根据员工表字段&#xff0c;实现一个新增员工的数据填写页面 2.在views.py文件中按下面的格式写 定义 ModelForm 类&#xff1a;UserModelForm &#xff08;自己命名的类名&#xff09;使用时需要导入包 定义视图函数&#xff1a;user_model_form_add&#xff08;在函…

华为固态电池引发的思索

华为固态电池真牛&#xff01; 超长续航&#xff1a;单次充电即可行驶3000公里 极速充电&#xff1a;五分钟内充满80% 极致安全&#xff1a;不可燃、不漏液 长寿命设计&#xff1a;循环寿命达10000次以上 如上是华为电池展示的优势项&#xff0c;每一条都让我们心动不已。…

美信监控易:运维新时代,守护数据安全

在 2025 年这个科技飞速发展的时代&#xff0c;数据安全已成为各行业关注的焦点。随着云计算、大数据、物联网等技术的不断推进&#xff0c;运维数据的保护面临着新的挑战与要求。美信时代公司的美信监控易运维管理软件&#xff0c;以其卓越的功能、特性和竞争力&#xff0c;为…

个人博客5年回顾

https://huangtao01.github.io/ 五年前&#xff0c;看程序羊的b站视频做的blog&#xff0c;受限于网络&#xff0c;只能单向学习&#xff0c;没有人指导与监督&#xff0c;从来没有想过&#xff0c;有没有什么问题&#xff1f; 一、为什么要做个人博客&#xff1f; 二、我是怎么…

Unity合批处理优化内存序列帧播放动画

Unity合批处理序列帧优化内存 介绍图片导入到Unity中的处理Unity中图片设置处理Unity中图片裁剪 创建序列帧动画总结 介绍 这里是针对Unity序列帧动画的优化内容&#xff0c;将多个图片合批处理然后为了降低Unity的内存占用&#xff0c;但是相对的质量也会稍微降低。可自行进行…

【Docker】容器被停止/删除的方式及命令:全面解析与实践指南

文章目录 引言一、容器的生命周期二、停止容器的命令及方式1. docker stop 命令2. docker kill 命令3. docker pause 和 docker unpause 命令4. docker restart 命令 三、删除容器的命令及方式1. docker rm 命令2. docker container prune 命令3. docker rm 与 docker rmi 的区…