基于YOLOv8深度学习的PCB板缺陷检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能AI、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:PCB板缺陷检测在电子制造行业中具有重要的意义。随着电子产品的普及和需求的不断增长,对PCB板的质量和可靠性要求也越来越高。PCB板作为电子产品的核心组件,其质量直接影响到整个产品的性能和稳定性。因此,对PCB板进行缺陷检测是确保产品质量的关键步骤。本文基于YOLOv8深度学习框架训练一个进行PCB板缺陷检测的模型,开发了一款PCB板缺陷检测系统,可用于检测常见的6种PCB板缺陷。并结合pythonPyQT5实现了UI界面,更方便进行功能的展示。该软件支持图片视频以及摄像头进行PCB板缺陷检测,并保存缺陷检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
    • (4)保存图片与视频检测结果
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3. 训练结果评估
    • 4. 检测结果识别
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

PCB板缺陷检测在电子制造行业中具有重要的意义。随着电子产品的普及和需求的不断增长,对PCB板的质量和可靠性要求也越来越高。PCB板作为电子产品的核心组件,其质量直接影响到整个产品的性能和稳定性。因此,对PCB板进行缺陷检测是确保产品质量的关键步骤。

PCB板缺陷检测的应用场景非常广泛,主要包括以下几个方面:
工业生产:在PCB板的生产过程中,通过实时检测和识别各种缺陷类型,可以有效地提高生产效率和产品质量。同时,通过对缺陷数据的统计和分析,可以为生产过程提供优化建议,降低生产成本。
维修与维护:在电子产品的使用过程中,可能会出现PCB板损坏的情况。通过对损坏的PCB板进行缺陷检测,可以快速定位问题所在,为维修人员提供有效的参考信息,缩短维修周期。
质量控制:在PCB板的出厂检验环节,通过对PCB板进行缺陷检测,可以确保产品符合质量标准,提高客户满意度。此外,通过对历史缺陷数据的分析,可以发现潜在的质量问题,为企业的质量改进提供依据。
研发与设计:在PCB板的设计阶段,通过对设计方案进行缺陷预测和评估,可以在设计初期发现并解决潜在问题,提高产品的可靠性和性能。同时,通过对不同设计方案的缺陷比较,可以为设计师提供优化建议,提高设计水平。

博主通过搜集PCB板缺陷的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的PCB板缺陷检测系统,可以检测常见的6种PCB板缺陷。可支持图片、视频以及摄像头跌倒检测,同时可以将图片或者视频检测结果进行保存

软件基本界面如下图所示:
在这里插入图片描述

觉得不错的小伙伴,感谢点赞、关注加收藏!如果大家有任何建议或意见,欢迎在评论区留言交流!

一、软件核心功能介绍及效果演示

软件主要功能

1. 可用于检查常见的6种PCB板缺陷,缺陷分别为:【缺失孔、老鼠咬痕、开路、短路、毛刺、铜渣】;
2.支持图片、视频及摄像头进行PCB板缺陷检测,同时支持图片的批量检测
2. 界面可实时显示目标位置目标总数置信度用时等信息;
3. 支持图片或者视频检测结果保存

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。
单个图片检测操作如下:
在这里插入图片描述

批量图片检测操作如下:
在这里插入图片描述

(2)视频检测演示

点击视频图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
在这里插入图片描述

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头,可以实时进行检测,再次点击摄像头图标,可关闭摄像头。
在这里插入图片描述

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。
在这里插入图片描述
在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

通过网络上搜集关于PCB缺陷的各类图片,并使用LabelMe标注工具对每张图片中的PCB缺陷目标边框(Bounding Box)与类型进行标注。一共包含683张图片,其中训练集包含544张图片验证集包含139张图片,部分图像及标注如下图所示。
在这里插入图片描述
在这里插入图片描述

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将跌倒检测的图片分为训练集与验证集放入PCB_DATASET目录下。
在这里插入图片描述
同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\PCBDetection\datasets\PCB_DATASET\train  # train images (relative to 'path') 128 images
val: E:\MyCVProgram\PCBDetection\datasets\PCB_DATASET\val  # val images (relative to 'path') 128 images
test:  # val images (optional)# number of classes
nc: 6# Classes
names: ["missing_hole", "mouse_bite", "open_circuit", "short", "spur", "spurious_copper"]

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

# 加载模型
model = YOLO("yolov8n.pt")  # 加载预训练模型
# Use the model
if __name__ == '__main__':# Use the modelresults = model.train(data='datasets/PCB_DATASET/data.yaml', epochs=250, batch=4)  # 训练模型# 将模型转为onnx格式# success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
本文训练结果如下:
在这里插入图片描述

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型各类缺陷检测的mAP@0.5都达到了0.86以上,平均为0.92,结果还是很不错的。
在这里插入图片描述

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/01_missing_hole_09.jpg"# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)# 检测图片
results = model(img_path)
res = results[0].plot()
res = cv2.resize(res,dsize=None,fx=0.5,fy=0.5,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款PCB板缺陷检测系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【软件】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,回复【软件】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的PCB缺陷检测系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/205724.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uniapp 打包的 IOS打开白屏 uniapp打包页面空白

uniapp的路由跟vue一样,有hash模式和history模式, 使用 URL 的 hash 来模拟一个完整的 URL,于是当 URL 改变时,页面不会重新加载。 如果不想要很丑的 hash,我们可以用路由的 history 模式,这种模式充分利用 history.pushState API 来完成 URL 跳转而无须重新加载页面。…

视频监控平台EasyCVR多场景应用,AI视频分析技术助力行业升级转型

传统的视频监控系统建设,经常存在各方面的因素制约,造成管理机制不健全、统筹规划不到位、联网共享不规范,形成“信息孤岛”、“数据烟囱”。在监控系统的建设中缺乏统一规划,标准不统一、视频图像信息利用率低等问题日益突出。随…

华清远见嵌入式学习——C++——作业2

作业要求&#xff1a; 代码&#xff1a; #include <iostream>using namespace std;class Rect { private:int width;int height;public:void init(int w,int h);void set_w(int w);void set_h(int h);void show(); };void Rect::init(int w,int h) {width w;height h;…

红队专题-fuzz技巧

红队专题 0x00 知己知彼常见 waf 收集SecureSphere (Imperva)西数WTS-WAF安全狗D盾腾讯云 waf阿里云云盾Web应用防火墙云锁UPUPW安全防护宝塔网站防火墙网防G01护卫神智创防火墙腾讯云玄武盾ISG 0x01 waf 绕过(过狗)姿势 举例SQL注入篇1.内联注释绕过2.等价替换法&#xff1a;3…

血的教训--kail系统免密centos7的坑【高版本ssh免密低版本ssh的坑】

血的教训–kail系统免密centos7的坑【高版本ssh免密低版本ssh的坑】 最近下载了一个2023版本的kail系统&#xff0c;但是经过几次设置免密后&#xff0c;ssh过去一直让提供密码&#xff0c;所以就仔细的分析了一下&#xff0c;果然还是发现了点猫腻 接上一个博客&#xff0c;大…

本地MinIO存储服务通过Java程序结合Cpolar内网穿透进行远程访问

[本地MinIO存储服务通过Java程序结合Cpolar内网穿透进行远程访问] 前言 MinIO是一款高性能、分布式的对象存储系统&#xff0c;它可以100%的运行在标准硬件上&#xff0c;即X86等低成本机器也能够很好的运行MinIO。它的优点包括高性能、高可用性、易于部署和管理、支持多租户…

如何在代码中启动与关闭ROS节点

在ROS开发中&#xff0c;节点的管理是很重要的一部分&#xff0c;其中有一些节点大部分时候用不到&#xff0c;只会在特定情况下被启动&#xff08;比如建图节点&#xff09;同时这些节点在使用完后还需要被关闭&#xff0c;因此我们就需要在程序中对这些节点进行启动与关闭的管…

OpenMMlab导出FCN模型并用onnxruntime推理

导出onnx文件 直接使用脚本 import torch from mmseg.apis init_modelconfig_file configs/fcn/fcn_r18-d8_4xb2-80k_cityscapes-512x1024.py checkpoint_file fcn_r18-d8_512x1024_80k_cityscapes_20201225_021327-6c50f8b4.pth model init_model(config_file, checkpoin…

pgsql 更新A表的x字段通过查询b表的z字段

查询表t_local_warning_hit_source的send_time 更新到表t_local_warning_source WITH t2 AS ( SELECT ID, send_time FROM t_local_warning_hit_source WHERE send_time > 2023-09-27 00:00:00 AND send_time < 2023-11-28 00:00:00 ) UPDATE t_local_warning_source t…

【通讯协议】REST API vs GraphQL

在API设计方面&#xff0c;REST和GraphQL各有缺点。下图显示了 REST 和 GraphQL 之间的快速比较。 REST 使用标准 HTTP 方法&#xff08;如 GET、POST、PUT、DELETE&#xff09;进行 CRUD 操作。当您需要在单独的服务/应用程序之间提供简单、统一的接口时&#xff0c;效果很好…

Spring框架学习 -- Bean的生命周期和作用域

目录 前言 案例 案例分析 作用域的定义 Bean对象的6种作用域 Singleton prototype 设置作用域 ​编辑延迟初始化 Spring的执行流程 Bean的生命周期 前言 我们可以类比一下普通变量的生命周期和作用域, 大多数变量的生命周期和作用域都被限定在了花括号内 {}, 除…

每日一题:LeetCode-283. 移动零

每日一题系列&#xff08;day 08&#xff09; 前言&#xff1a; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f50e…

相机标定张正友、opencv和halcon对比(1)

本文将从基本标定开始&#xff0c;结合实际工作经验&#xff0c;分析张正友、opencv和halcon三者相机标定的深层原理与不同之处&#xff0c;内容比较多&#xff0c;如果出现错误请指正。 相机光学模型 我们使用的镜头都是由多组镜片组成&#xff0c;它实际上是一种厚透镜模型…

Linux socket编程(8):shutdown和close的区别详解及例子

在Linux中有两种操作可以终止socket间的进程通信&#xff1a;close和shutdown。但这两种函数在使用时有着不同的行为和效果。在网络编程中&#xff0c;正确地选择和使用这些操作至关重要&#xff0c;因为它们直接影响着通信的结束和资源的释放。本文将介绍close和shutdown函数&…

Alignment of HMM, CTC and RNN-T,对齐方式详解——语音信号处理学习(三)(选修二)

参考文献&#xff1a; Speech Recognition (option) - Alignment of HMM, CTC and RNN-T哔哩哔哩bilibili 2020 年 3月 新番 李宏毅 人类语言处理 独家笔记 Alignment - 7 - 知乎 (zhihu.com) 本次省略所有引用论文 目录 一、E2E 模型和 CTC、RNN-T 的区别 E2E 模型的思路 C…

mongodb基本操作命令

mongodb快速搭建及使用 1.mongodb安装1.1 docker安装启动mongodb 2.mongo shell常用命令2.1 插入文档2.1.1 插入单个文档2.1.2 插入多个文档2.1.3 用脚本批量插入 2.2 查询文档2.2.1 排序查询2.2.1 分页查询 前言&#xff1a;本篇默认你是对nongodb的基础概念有了了解&#xff…

正则表达式【C#】

1作用&#xff1a; 1文本匹配&#xff08;验证字符串&#xff09; 2查找字符串 2符号&#xff1a; . ^ $ * - ? ( ) [ ] { } \ | [0-9] 匹配出数字 3语法格式&#xff1a; / 表示模式 / 修饰符 /[0-9]/g 表示模式&#xff1a;是指匹配条件&#xff0c;要写在2个斜…

【LabVIEW学习】3.labview制作安装程序

一。生成exe文件 1.创建可执行文件 &#xff08;1&#xff09;创建项目 注意&#xff1a; 1.创建.exe文件&#xff0c;这个文件在labview环境下才可以运行&#xff0c;如果直接传递给其他电脑&#xff08;没有labview环境&#xff09;&#xff0c;他是不可以运行的。 2.如果已…

Redis-Redis 高级数据结构 HyperLogLog与事务

Redis 高级数据结构 HyperLogLog HyperLogLog(Hyper [ˈhaɪpə(r)] ) 并不是一种新的数据结构 ( 实际类型为字符串类 型) &#xff0c;而是一种基数算法 , 通过 HyperLogLog 可以利用极小的内存空间完成独立总数的统计&#xff0c;数据集可以是 IP 、 Email 、 ID 等。 如…

最大熵模型

1. 最大熵原理 学习概率模型时&#xff0c;在所有可能的概率模型(分布)中&#xff0c;熵最大的模型是最好的模型。 假设离散随机变量X的概率分布是P(X)&#xff0c;则其熵为 且满足0<H(P)<logN 当且仅当X的分布是均匀分布时右边的等号成立&#xff0c;即当X服从均匀分布…