基于opencv+ImageAI+tensorflow的智能动漫人物识别系统——深度学习算法应用(含python、JS、模型源码)+数据集(三)

目录

  • 前言
  • 总体设计
    • 系统整体结构图
    • 系统流程图
  • 运行环境
    • 爬虫
    • 模型训练
    • 实际应用
  • 模块实现
    • 1. 数据准备
      • 1)爬虫下载原始图片
      • 2)手动筛选图片
    • 2. 数据处理
      • 1)切割得到人物脸部
      • 2)重新命名处理后的图片
      • 3)添加到数据集
    • 3. 模型训练及保存
      • 1)设置基本参数
      • 2)模型保存
      • 3)模块预测
  • 相关其它博客
  • 工程源代码下载
  • 其它资料下载


在这里插入图片描述

前言

本项目通过爬虫技术获取图片,利用OpenCV库对图像进行处理,识别并切割出人物脸部,形成了一个用于训练的数据集。通过ImageAI进行训练,最终实现了对动漫人物的识别模型。同时,本项目还开发了一个线上Web应用,使得用户可以方便地体验和使用该模型。

首先,项目使用爬虫技术从网络上获取图片。这些图片包含各种动漫人物,其中我们只对人物脸部进行训练,所以我们会对图像进行处理,并最终将这些图像将作为训练数据的来源。

其次,利用OpenCV库对这些图像进行处理,包括人脸检测、图像增强等步骤,以便准确识别并切割出人物脸部。这一步是为了构建一个清晰而准确的数据集,用于模型的训练。

接下来,通过ImageAI进行训练。ImageAI是一个简化图像识别任务的库,它可以方便地用于训练模型,这里用于训练动漫人物的识别模型。

最终,通过项目开发的线上Web应用,用户可以上传动漫图像,系统将使用训练好的模型识别图像中的动漫人物,并返回相应的结果。

总的来说,本项目结合了爬虫、图像处理、深度学习和Web开发技术,旨在提供一个便捷的动漫人物识别服务。这对于动漫爱好者、社交媒体平台等有着广泛的应用前景。

总体设计

本部分包括系统整体结构图和系统流程图。

系统整体结构图

系统整体结构如图所示。

在这里插入图片描述

系统流程图

系统流程如图所示。

在这里插入图片描述

运行环境

本部分包括爬虫、模型训练及实际应用运行环境。

爬虫

安装Python3.6以上及Selenium3.0.2版本。

详见博客。

模型训练

本部分包括安装依赖、安装ImageAI。

详见博客。

实际应用

实际应用包括前端开发环境和后端环境的搭建。

详见博客。

模块实现

本项目包括4个模块:数据准备、数据处理、模型训练及保存、模型测试,下面分别介绍各模块的功能及相关代码。

1. 数据准备

本项目的数据来自于百度图片,通过爬虫获取。

1)爬虫下载原始图片

详见博客。

2)手动筛选图片

部分人物的名称、现实事物或人物有重名现象,加上一些图片质量不佳,需要人为剔除,手动筛选。

详见博客。

2. 数据处理

将图片中的人脸裁剪进行模型训练,切割人脸部分由OpenCV通过训练好的动漫人物脸部识别模型lbpcascade_animeface截取人物脸部。GitHub下载地址为https://github.com/nagadomi/lbpcascade_animeface。

1)切割得到人物脸部

相关代码如下:

#基本参数设定
SRC = "Raw"    #待处理的文件路径
DST = "Data"   #处理后的文件路径
TRAIN_PER = 5  #训练的图片比例
TEST_PER = 1   #测试的图片比例
#处理原图片得到人物脸部图片并按比例分配训练和测试用于训练模型
for image_file in files:  #读取所有图片image_file = image_file.replace('\\', '/')  #解决Windows下的文件路径问题target_path = "/".join(image_file.strip("/").split('/')[1:-1])target_path = os.path.join(dst, target_path) + "/"if not os.path.exists(target_path):os.makedirs(target_path)
count = len(os.listdir(target_path)) + 1
image = cv2.imdecode(np.fromfile(image_file, dtype=np.uint8), -1)  
#解决中文路径读入图片问题gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)  #OpenCV的设置gray = cv2.equalizeHist(gray)  #转化为灰度图片faces = cascade.detectMultiScale(gray,scaleFactor=1.05,  #指定每个图像缩放比例,缩小图像大小的参数minNeighbors=4,    #此参数将影响检测到的面孔,值越高,检测结果越少,质量越好minSize=(24, 24)   #最小对象大小或者小于此值的对象将被忽略for (x, y, w, h) in faces:crop_img = image[y:y + h, x:x + w]crop_img = cv2.resize(crop_img, (96, 96))  #重置为96*96filename = os.path.basename(image_file).split('.')[0]   cv2.imencode('.jpg',crop_img)[1].tofile(os.path.join(target_path, str(count) + ".jpg")) #保存切割的脸部

处理前和处理后的效果如图所示。

在这里插入图片描述

处理前图片

在这里插入图片描述

处理后图片

2)重新命名处理后的图片

对于处理后的图片,需要重新指定文件名称以便于统计和处理。相关代码如下:

def rename_files(dir, prefix='', joiner='_', startNum=0,changeType='', ignoreType='', typeOnly=''):'''重命名一个文件夹中的所有文件Args:dir(string):  重命名文件夹的路径prefix(string):  文件名前缀joiner(string):  连接文件名前缀和数字的连接符,默认为下划线startNum(int):  重命名文件的开始数字,默认为0changeType(string):  把文件重命名为指定类型,默认不指定类型typeOnly(string):  只处理指定类型的文件,使用空格分割,例如“.jpg .jpeg .png .bmp .webp”ignoreType(string):  忽略处理文件的类型,使用空格分割,例如,“.py .docx”'''for root, _, files in os.walk(dir):root = root.replace('\\', '/')if prefix == '':prefix = root.split('/')[-1]count = startNumfor file in files:true_type = os.path.splitext(file)[-1]  #文件真实类型type_list = typeOnly.split()ignore_list = ignoreType.split()if true_type in type_list or len(type_list) == 0:if true_type in ignore_list:continueif changeType == '':  #是否指定改变类型file_type = true_typeelse:file_type = changeTypenew_name = "{}{}{}{}".format(prefix, joiner, str(count), file_type)path = os.path.join(root, new_name)old_path = os.path.join(root, file)if old_path == path:continueif not os.path.exists(path):os.rename(old_path, path)count = count + 1
def main():parser = argparse.ArgumentParser(description="重命名指定文件夹下的所有文件")parser.add_argument("dir", type=str, help="重命名文件的路径")parser.add_argument("--prefix", "-p", type=str,default='', help="前缀,默认为文件名")parser.add_argument("--joiner", "-j", type=str, default="_", help="连接符")parser.add_argument("--startNum", "-s", type=int, default=0, help="开始数")parser.add_argument("--changeType", "-c", type=str,default='', help="重命名文件为指定类型")parser.add_argument("--ignoreType", "-i", type=str,default='', help="忽略处理的类型,使用空格分割")parser.add_argument("--typeOnly", "-t", type=str,default='', help="指定处理的类型,使用空格分割")args = parser.parse_args()rename_files(dir=args.dir, joiner="_temp_", ignoreType=args.ignoreType, typeOnly=args.typeOnly)rename_files(dir=args.dir, prefix=args.prefix, joiner=args.joiner, startNum=args.startNum,changeType=args.changeType, ignoreType=args.ignoreType, typeOnly=args.typeOnly)
print("Rename files finished")

3)添加到数据集

已经切割得到的脸部经过重新排序命名后,按照一定的比例添加到数据集。相关代码如下:

def divide_train_test(src, train_percentage=5, test_percentage=1):if not os.path.exists(src):print("folder %s is not exist" % src)returndirs = os.listdir(src)test_dir = os.path.join(src, "test")train_dir = os.path.join(src, "train")  #训练数据路径if not os.path.exists(test_dir):os.mkdir(test_dir)if not os.path.exists(train_dir):os.mkdir(train_dir)for dir_name in dirs:if dir_name != "test" and dir_name != "train":current_dir = os.path.join(src, dir_name)test_dir = os.path.join(src, "test", dir_name)  #测试集路径train_dir = os.path.join(src, "train", dir_name)  #训练集路径if not os.path.exists(test_dir):os.mkdir(test_dir)if not os.path.exists(train_dir):os.mkdir(train_dir)if os.path.isdir(current_dir):images = os.listdir(current_dir)image_num = len(images)for image in images:filename = os.path.basename(image).split('.')[0]if filename.isdigit():percentage = train_percentage + test_percentagetest_num = (image_num / percentage) * test_percentage + 1if int(filename) <= test_num:if not os.path.exists(os.path.join(test_dir, image)):shutil.move(os.path.join(current_dir, image), os.path.join(test_dir))else:os.remove(os.path.join(current_dir, image))else:if not os.path.exists(os.path.join(train_dir, image)):shutil.move(os.path.join(current_dir, image), os.path.join(train_dir))else:os.remove(os.path.join(current_dir, image))shutil.rmtree(current_dir)for dirs in os.listdir(src):for name in os.listdir(os.path.join(src, dirs)):if os.path.isdir(os.path.join(src, dirs, name)):rename_file(os.path.join(src, dirs, name))print("Set all cropped images to train and test")

3. 模型训练及保存

本部分包括设置基本参数、模型保存和模块预测。

1)设置基本参数

相关代码如下:

DATA_PATH = "Datas" #数据集路径
TRAIN_NUM = 30       #训练次数
BATCH = 5             #批次
model_trainer = ModelTraining()
model_trainer.setModelTypeAsResNet()        #训练算法
model_trainer.setDataDirectory(data_path)  #训练目录
model_trainer.trainModel(num_objects=num_obj,  
#该参数用于指定图像数据集中对象的数量
num_experiments=train_num,  #该参数用于指定图像训练的次数
enhance_data=True,  #该参数用于指定是否生成训练图像的副本以获得更好的性能
batch_size=batch,  #该参数用于指定批次数量,分批训练,直到所有批次训练集都完成为止
show_network_summary=True #该参数用于指定是否在控制台中显示训练的过程 

2)模型保存

模型每次训练完成都会输出一个.h5文件和对应的.json文件,如图1所示。model_class.json文件中包含人物名称,molde_ex-xxx_acc_xxxxxx.h5中ex后的数字表示训练次数,acc后的数字表示对应的精度。model_class.json文件中的人物名称如图2所示,采用Unicode编码。训练好的模型保存后可重复使用,也可移植到其他环境中使用。

在这里插入图片描述

图1 训练模型后输出结果

在这里插入图片描述

图2 model_class.json文件中的人物名称

3)模块预测

相关代码如下:

#设置基本参数
IMAGE_PATH = "uploader/"  #预测图片路径
MODEL_PATH = "data/models/model_ex-150_acc-0.883871.h5"  #模型路径
JSON_PATH = "data/json/model_class.json"  #json文件路径
RESULT_COUNT = 3  #显示预测结果的数量
prediction = CustomImagePrediction()  #初始化ResNet
prediction.setModelTypeAsResNet()  #设置ResNet模型
#预测函数
def predict(img_path, model_path=MODEL_PATH, json_path=JSON_PATH, result_count=RESULT_COUNT):if not os.path.exists(img_path):print("Can not found img %s" % img_path)returnwith open(json_path) as f:num_obj = len(json.load(f))print(num_obj)prediction.setModelPath(model_path)prediction.setJsonPath(json_path)prediction.loadModel(num_objects=num_obj)predictions, probabilities = prediction.predictImage(img_path, result_count=result_count)result = {}i = 1for eachPrediction, eachProbability in zip(predictions, probabilities):result[i]={eachPrediction: str(round(float(eachProbability), 2)) + '%' }i = i + 1print(result)return result

相关其它博客

基于opencv+ImageAI+tensorflow的智能动漫人物识别系统——深度学习算法应用(含python、JS、模型源码)+数据集(一)

基于opencv+ImageAI+tensorflow的智能动漫人物识别系统——深度学习算法应用(含python、JS、模型源码)+数据集(二)

基于opencv+ImageAI+tensorflow的智能动漫人物识别系统——深度学习算法应用(含python、JS、模型源码)+数据集(四)

工程源代码下载

详见本人博客资源下载页


其它资料下载

如果大家想继续了解人工智能相关学习路线和知识体系,欢迎大家翻阅我的另外一篇博客《重磅 | 完备的人工智能AI 学习——基础知识学习路线,所有资料免关注免套路直接网盘下载》
这篇博客参考了Github知名开源平台,AI技术平台以及相关领域专家:Datawhale,ApacheCN,AI有道和黄海广博士等约有近100G相关资料,希望能帮助到所有小伙伴们。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/205725.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于YOLOv8深度学习的PCB板缺陷检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能AI、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推荐--…

uniapp 打包的 IOS打开白屏 uniapp打包页面空白

uniapp的路由跟vue一样,有hash模式和history模式, 使用 URL 的 hash 来模拟一个完整的 URL,于是当 URL 改变时,页面不会重新加载。 如果不想要很丑的 hash,我们可以用路由的 history 模式,这种模式充分利用 history.pushState API 来完成 URL 跳转而无须重新加载页面。…

视频监控平台EasyCVR多场景应用,AI视频分析技术助力行业升级转型

传统的视频监控系统建设&#xff0c;经常存在各方面的因素制约&#xff0c;造成管理机制不健全、统筹规划不到位、联网共享不规范&#xff0c;形成“信息孤岛”、“数据烟囱”。在监控系统的建设中缺乏统一规划&#xff0c;标准不统一、视频图像信息利用率低等问题日益突出。随…

华清远见嵌入式学习——C++——作业2

作业要求&#xff1a; 代码&#xff1a; #include <iostream>using namespace std;class Rect { private:int width;int height;public:void init(int w,int h);void set_w(int w);void set_h(int h);void show(); };void Rect::init(int w,int h) {width w;height h;…

红队专题-fuzz技巧

红队专题 0x00 知己知彼常见 waf 收集SecureSphere (Imperva)西数WTS-WAF安全狗D盾腾讯云 waf阿里云云盾Web应用防火墙云锁UPUPW安全防护宝塔网站防火墙网防G01护卫神智创防火墙腾讯云玄武盾ISG 0x01 waf 绕过(过狗)姿势 举例SQL注入篇1.内联注释绕过2.等价替换法&#xff1a;3…

血的教训--kail系统免密centos7的坑【高版本ssh免密低版本ssh的坑】

血的教训–kail系统免密centos7的坑【高版本ssh免密低版本ssh的坑】 最近下载了一个2023版本的kail系统&#xff0c;但是经过几次设置免密后&#xff0c;ssh过去一直让提供密码&#xff0c;所以就仔细的分析了一下&#xff0c;果然还是发现了点猫腻 接上一个博客&#xff0c;大…

本地MinIO存储服务通过Java程序结合Cpolar内网穿透进行远程访问

[本地MinIO存储服务通过Java程序结合Cpolar内网穿透进行远程访问] 前言 MinIO是一款高性能、分布式的对象存储系统&#xff0c;它可以100%的运行在标准硬件上&#xff0c;即X86等低成本机器也能够很好的运行MinIO。它的优点包括高性能、高可用性、易于部署和管理、支持多租户…

如何在代码中启动与关闭ROS节点

在ROS开发中&#xff0c;节点的管理是很重要的一部分&#xff0c;其中有一些节点大部分时候用不到&#xff0c;只会在特定情况下被启动&#xff08;比如建图节点&#xff09;同时这些节点在使用完后还需要被关闭&#xff0c;因此我们就需要在程序中对这些节点进行启动与关闭的管…

OpenMMlab导出FCN模型并用onnxruntime推理

导出onnx文件 直接使用脚本 import torch from mmseg.apis init_modelconfig_file configs/fcn/fcn_r18-d8_4xb2-80k_cityscapes-512x1024.py checkpoint_file fcn_r18-d8_512x1024_80k_cityscapes_20201225_021327-6c50f8b4.pth model init_model(config_file, checkpoin…

pgsql 更新A表的x字段通过查询b表的z字段

查询表t_local_warning_hit_source的send_time 更新到表t_local_warning_source WITH t2 AS ( SELECT ID, send_time FROM t_local_warning_hit_source WHERE send_time > 2023-09-27 00:00:00 AND send_time < 2023-11-28 00:00:00 ) UPDATE t_local_warning_source t…

【通讯协议】REST API vs GraphQL

在API设计方面&#xff0c;REST和GraphQL各有缺点。下图显示了 REST 和 GraphQL 之间的快速比较。 REST 使用标准 HTTP 方法&#xff08;如 GET、POST、PUT、DELETE&#xff09;进行 CRUD 操作。当您需要在单独的服务/应用程序之间提供简单、统一的接口时&#xff0c;效果很好…

Spring框架学习 -- Bean的生命周期和作用域

目录 前言 案例 案例分析 作用域的定义 Bean对象的6种作用域 Singleton prototype 设置作用域 ​编辑延迟初始化 Spring的执行流程 Bean的生命周期 前言 我们可以类比一下普通变量的生命周期和作用域, 大多数变量的生命周期和作用域都被限定在了花括号内 {}, 除…

每日一题:LeetCode-283. 移动零

每日一题系列&#xff08;day 08&#xff09; 前言&#xff1a; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f50e…

相机标定张正友、opencv和halcon对比(1)

本文将从基本标定开始&#xff0c;结合实际工作经验&#xff0c;分析张正友、opencv和halcon三者相机标定的深层原理与不同之处&#xff0c;内容比较多&#xff0c;如果出现错误请指正。 相机光学模型 我们使用的镜头都是由多组镜片组成&#xff0c;它实际上是一种厚透镜模型…

Linux socket编程(8):shutdown和close的区别详解及例子

在Linux中有两种操作可以终止socket间的进程通信&#xff1a;close和shutdown。但这两种函数在使用时有着不同的行为和效果。在网络编程中&#xff0c;正确地选择和使用这些操作至关重要&#xff0c;因为它们直接影响着通信的结束和资源的释放。本文将介绍close和shutdown函数&…

Alignment of HMM, CTC and RNN-T,对齐方式详解——语音信号处理学习(三)(选修二)

参考文献&#xff1a; Speech Recognition (option) - Alignment of HMM, CTC and RNN-T哔哩哔哩bilibili 2020 年 3月 新番 李宏毅 人类语言处理 独家笔记 Alignment - 7 - 知乎 (zhihu.com) 本次省略所有引用论文 目录 一、E2E 模型和 CTC、RNN-T 的区别 E2E 模型的思路 C…

mongodb基本操作命令

mongodb快速搭建及使用 1.mongodb安装1.1 docker安装启动mongodb 2.mongo shell常用命令2.1 插入文档2.1.1 插入单个文档2.1.2 插入多个文档2.1.3 用脚本批量插入 2.2 查询文档2.2.1 排序查询2.2.1 分页查询 前言&#xff1a;本篇默认你是对nongodb的基础概念有了了解&#xff…

正则表达式【C#】

1作用&#xff1a; 1文本匹配&#xff08;验证字符串&#xff09; 2查找字符串 2符号&#xff1a; . ^ $ * - ? ( ) [ ] { } \ | [0-9] 匹配出数字 3语法格式&#xff1a; / 表示模式 / 修饰符 /[0-9]/g 表示模式&#xff1a;是指匹配条件&#xff0c;要写在2个斜…

【LabVIEW学习】3.labview制作安装程序

一。生成exe文件 1.创建可执行文件 &#xff08;1&#xff09;创建项目 注意&#xff1a; 1.创建.exe文件&#xff0c;这个文件在labview环境下才可以运行&#xff0c;如果直接传递给其他电脑&#xff08;没有labview环境&#xff09;&#xff0c;他是不可以运行的。 2.如果已…

Redis-Redis 高级数据结构 HyperLogLog与事务

Redis 高级数据结构 HyperLogLog HyperLogLog(Hyper [ˈhaɪpə(r)] ) 并不是一种新的数据结构 ( 实际类型为字符串类 型) &#xff0c;而是一种基数算法 , 通过 HyperLogLog 可以利用极小的内存空间完成独立总数的统计&#xff0c;数据集可以是 IP 、 Email 、 ID 等。 如…