Elasticsearch:FMA 风格的向量相似度计算

作者:Chris Hegarty

在 Lucene 9.7.0 中,我们添加了利用 SIMD 指令执行向量相似性计算的数据并行化的支持。 现在,我们通过使用融合乘加 (Fused Mulitply-Add - FMA) 进一步推动这一点。

什么是 FMA

乘法和加法是一种常见的运算,它计算两个数字的乘积并将该乘积与第三个数字相加。 这些类型的操作在向量相似度计算期间反复执行。

融合乘加 (FMA) 是一种单一运算,可同时执行乘法和加法运算 - 乘法和加法被称为“融合”在一起。 FMA 通常比单独的乘法和加法更快,因为大多数 CPU 将其建模为单个指令。

FMA 还可以产生更准确的结果。 浮点数的单独乘法和加法运算有两轮; 一个用于乘法,一个用于加法,因为它们是单独的指令,需要产生单独的结果。 也就是说有效地表述为:

而 FMA 具有单舍入,仅适用于乘法和加法的组合结果。 也就是说有效地表述为:

在 FMA 指令中,a * b 生成无限精度的中间结果,在最终结果舍入之前将其与 c 相加。 与单独的乘法和加法运算相比,这消除了单轮运算,从而提高了准确性。

底层是如何实现的?

那么到底发生了什么变化呢? 在 Lucene 中,我们用单个 FMA 运算替换了单独的乘法和加法运算。 标量变体现在使用 Math::fma,而巴拿马向量化变体使用 FloatVector::fma。

如果我们查看反汇编,我们可以看到此更改所产生的效果。 之前我们看到过点积的巴拿马向量化实现的这种代码模式。

vmovdqu32 zmm0,ZMMWORD PTR [rcx+r10*4+0x10]
vmulps zmm0,zmm0,ZMMWORD PTR [rdx+r10*4+0x10]
vaddps zmm4,zmm4,zmm0

vmovdqu32 指令将 512 位打包双字值从内存位置加载到 zmm0 寄存器中。 然后,vmulps 指令将 zmm0 中的值与内存位置中相应的打包值相乘,并将结果存储在 zmm0 中。 最后,vaddps 指令将 zmm0 中的 16 个打包单精度浮点值与 zmm4 中的相应值相加,并将结果存储到 zmm4 中。

通过更改使用 FloatVector::fma,我们看到以下模式:

vmovdqu32 zmm0,ZMMWORD PTR [rdx+r11*4+0xd0]
vfmadd231ps zmm4,zmm0,ZMMWORD PTR [rcx+r11*4+0xd0]

同样,第一条指令与前面的示例类似,它将 512 位打包双字值从内存位置加载到 zmm0 寄存器中。 vfmadd231ps(这是 FMA 指令)将 zmm0 中的值与内存位置中相应的打包值相乘,将中间结果添加到 zmm4 中的值,执行舍入并将生成的 16 个打包单精度浮点值存储在 zmm4.

vfmadd231ps 指令做了很多事情! 这是向 CPU 发出的关于代码正在运行的计算性质的明确信号。 鉴于此,CPU 可以就如何完成此操作做出更明智的决策,这通常会提高性能(以及前面所述的准确性)。

这样的修改会快吗?

一般来说,使用 FMA 通常会提高性能。 但一如既往,你需要进行基准测试! 值得庆幸的是,Lucene 在确定是否使用 FMA 时会处理相当复杂的问题,因此你不必这样做。 例如,CPU 是否支持 FMA、Java 虚拟机中是否启用了 FMA,以及仅在已证明比单独的乘法和加法运算更快的架构上启用 FMA。 正如你可能知道的那样,这种启发式方法并不完美,但对于提供良好的开箱即用体验大有帮助。 虽然 FMA 提高了准确性,但我们发现在未启用 FMA 时对预先存在的相似性计算没有负面影响。

随着 FMA 的使用,向量相似性函数套件得到了一些(更多)的喜爱。 所有点积、平方和余弦距离、标量和巴拿马向量化变体均已更新。 基于反汇编检查和实证实验进行了优化,带来了有助于填充管道并保持 CPU 繁忙的改进; 主要是通过更加一致和有针对性的循环展开,以及消除循环内的数据依赖性。

在此更改上给出具体的性能改进数字并不简单,因为效果涵盖了多个相似函数和变体,但我们看到了积极的吞吐量改进,从浮点点积中的个位数百分比到余弦中更高的两位数百分比改进。 基于字节的相似性函数也显示出类似的吞吐量改进。

总结起来

在 Lucene 9.7.0 中,我们添加了通过 SIMD 指令更快地实现向量搜索所使用的低级原语操作的功能。 在即将推出的 Lucene 9.9.0 中,我们在此基础上利用更快的 FMA 指令,并在所有相似性函数中更一致地应用优化技术。 以前版本的 Elasticsearch 已经受益于 SIMD,即将推出的 Elasticsearch 8.12.0 将具有 FMA 改进。

最后,我想感谢 Lucene PMC 成员 Robert Muir 在这一领域的持续改进,以及愉快而富有成效的合作。

原文:Vector Similarity Computations FMA-style — Elastic Search Labs

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/205771.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RNN-T Training,RNN-T模型训练详解——语音信号处理学习(三)(选修三)

参考文献: Speech Recognition (option) - RNN-T Training哔哩哔哩bilibili 2020 年 3月 新番 李宏毅 人类语言处理 独家笔记 Alignment Train - 8 - 知乎 (zhihu.com) 本次省略所有引用论文 目录 一、如何将 Alignment 概率加和 对齐方式概率如何计算 概率加和计…

OBC、DCDC自动化测试解决方案!

OBC(车载充电机)和DCDC(直流-直流变换器)是电动汽车的核心部件,DCDC和OBC的功能质量对于整车的性能和安全性至关重要。在OBC和DCDC,以及整车开发测试过程中,需要对OBC和DCDC进行功能和性能方面进行全面的测…

1990-2021年上市公司排污费和环境保护税数据

1990-2021年上市公司排污费和环境保护税数据 1、时间:1990-2021年 2、指标: 证券代码、会计期间、year、month、行业、应缴排污费/环境保护税、其中:大气污染物、其中:水污染物、其中:固体废物、其中:噪…

京东API商品详情接口,通过商品ID获取商品名称,淘宝主图,价格,颜色规格尺寸,库存,SKU数据等调用示例

要接入京东API接口以采集电商平台上的商品数据,可以按照以下步骤进行: 注册并获取API密钥:在使用API接口之前,需要注册并获取API密钥。API密钥是识别身份的唯一标识符。每个API接口都有自己的注册、认证和授权过程,因…

设计规则:模块化的力量

这是一本比较冷门的书**《设计规则:模块化的力量》**,虽然豆瓣上只有58个评价,但是确实能学到很多东西。 这本书对我非常深远。不是是投资,创业,还是其他领域,模块化思想都能帮上你。这本书告诉我们生万物…

elasticsearch操作

目录 一、mapping映射属性二、索引库的CRUD2.1 创建索引库和映射2.2 查询索引库2.3 修改索引库2.4 删除索引库2.5 总结 三、文档操作3.1 新增文档3.2 查询文档3.3 删除文档3.4 修改文档3.5 总结 四、RestClient操作索引库4.1 初始化RestClient4.2 创建索引库4.3 删除索引库4.4 …

yolov1网络结构说明

文章目录 一. 网络结构二. 网络说明1. 网络的输入2. 网络的输出(1) 5 5表示:每个网格使用两个先验框进行预测。(2) “5”表示:每个先验框包含的预测信息的数量。(3) 20表示:20个分类预测值(4) 每个网格能预测几个目标? 一. 网络结构 论文下…

【古月居《ros入门21讲》学习笔记】18_常用可视化工具的使用

目录 说明: 1. Qt工具箱 日志输出工具:rqt_console 绘制数据曲线:rqt_plot 图像渲染工具:rqt_image_view 综合工具:rqt 2. 三维可视化工具:Rviz Rviz启动 使用示例 3. 仿真平台:Gazebo…

Kotlin学习——kt入门合集博客 kt里的委派模式Delegation kt里的特性

Kotlin 是一门现代但已成熟的编程语言,旨在让开发人员更幸福快乐。 它简洁、安全、可与 Java 及其他语言互操作,并提供了多种方式在多个平台间复用代码,以实现高效编程。 https://play.kotlinlang.org/byExample/01_introduction/02_Functio…

谱方法学习笔记-下(超详细)

谱方法学习笔记📒 谱方法学习笔记-上(超详细) 声明:鉴于CSDN使用 K a T e X KaTeX KaTeX 渲染公式, KaTeX \KaTeX KATE​X 与 L a T e X LaTeX LaTeX 不同,不支持直接的交叉引用命令,如\label和\eqref。 KaTeX \KaT…

Linux学习笔记09、Shell命令之历史命令和自动补全

上一篇:Linux学习笔记08、Shell命令之常用命令缩写及全称 目录 1、历史命令: 1.1、查看所有历史命令列表: 1.2、查看指定历史命令: 1.3、清除历史命令: 2、自动补全 2.1、当字符串唯一时: 2.2、当有多个…

Python自动化测试数据驱动解决数据错误

数据驱动将测试数据和测试行为完全分离,实施数据驱动测试步骤如下: A、编写测试脚本,脚本需要支持从程序对象、文件或者数据库读入测试数据; B、将测试脚本使用的测试数据存入程序对象、文件或者数据库等外部介质中;…

C++面向对象复习笔记暨备忘录

C指针 指针作为形参 交换两个实际参数的值 #include <iostream> #include<cassert> using namespace std;int swap(int *x, int* y) {int a;a *x;*x *y;*y a;return 0; } int main() {int a 1;int b 2;swap(&a, &b);cout << a << &quo…

GraphCast:基于机器学习的全球中期天气预测模型

文章信息 文章题为”GraphCast: Learning skillful medium-range global weather forecasting”&#xff0c;该文章于2023年发表至Science&#xff0c;文章内容主要关于利用机器学习模型&#xff0c;实现高效、准确的全球中期天气预测。由于文章内容较多&#xff0c;本文仅对研…

Retrofit+OkHttp打印Request 请求地址参数

在移动端开发时&#xff0c;我们常常需要像web端一样可以方便地查看我们向服务器发送请求的报文详细日志&#xff08;如请求地址&#xff0c;请求参数&#xff0c;请求类型&#xff0c;服务器响应的耗时时间&#xff0c;请求返回的结果等等&#xff09;。 使用Retrofit时&…

【傻瓜级JS-DLL-WINCC-PLC交互】6.​向PLC里面装载数据变量

思路 JS-DLL-WINCC-PLC之间进行交互&#xff0c;思路&#xff0c;先用Visual Studio创建一个C#的DLL控件&#xff0c;然后这个控件里面嵌入浏览器组件&#xff0c;实现JS与DLL通信&#xff0c;然后DLL放入到WINCC里面的图形编辑器中&#xff0c;实现DLL与WINCC的通信。然后PLC与…

Jmeter进阶使用:BeanShell实现接口前置和后置操作!

一、背景 我们使用Jmeter做压力测试或者接口测试时&#xff0c;除了最简单的直接对接口发起请求&#xff0c;很多时候需要对接口进行一些前置操作&#xff1a;比如提前生成测试数据&#xff0c;以及一些后置操作&#xff1a;比如提取接口响应内容中的某个字段的值。举个最常用…

fastReID论文总结

fastReID论文总结 fastReIDReID所面临的挑战提出的背景概念&#xff1a;所谓ReID就是从视频中找出感兴趣的物体&#xff08;人脸、人体、车辆等&#xff09;应用场景&#xff1a;存在的问题&#xff1a;当前的很多ReID任务可复用性差&#xff0c;无法快速落地使用解决方式&…

用Metasploit进行信息收集2

基于FTP协议收集信息 1.查看ftp服务的版本信息 打开metasploit 查看ftp版本的模块&#xff0c;并进入模块 msf6 > search ftp_version msf6 > use auxiliary/scanner/ftp/ftp_version msf6 auxiliary(scanner/ftp/ftp_version) > show options 查看靶机的端口开方情…

SpringCloud原理】OpenFeign之FeignClient动态代理生成原理

大家好&#xff0c;前面我已经剖析了OpenFeign的动态代理生成原理和Ribbon的运行原理&#xff0c;这篇文章来继续剖析SpringCloud组件原理&#xff0c;来看一看OpenFeign是如何基于Ribbon来实现负载均衡的&#xff0c;两组件是如何协同工作的。 一、Feign动态代理调用实现rpc流…