微服务--06--Sentinel 限流、熔断

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 1.微服务保护
    • 雪崩问题
    • 服务保护方案
    • 1.1.请求限流
    • 1.2.线程隔离
    • 1.3.服务熔断
  • 2.Sentinel
    • 2.1.介绍和安装
      • 官方网站:[https://sentinelguard.io/zh-cn/](https://sentinelguard.io/zh-cn/)
    • 2.2.微服务整合
  • 3.请求限流
  • 4.线程隔离
    • 4.1.OpenFeign整合Sentinel
    • 4.2.配置线程隔离
  • 5.服务熔断
    • 5.1.编写降级逻辑
    • 5.2.服务熔断
      • 状态机


1.微服务保护

在这里插入图片描述
在这里插入图片描述
保证服务运行的健壮性,避免级联失败导致的雪崩问题,就属于微服务保护。这章我们就一起来学习一下微服务保护的常见方案以及对应的技术。

在这里插入图片描述

雪崩问题

微服务调用链路中的某个服务故障,引起整个链路中的所有微服务都不可用,这就是雪崩。
在这里插入图片描述
在这里插入图片描述

服务保护方案

微服务保护的方案有很多,比如:

  • 请求限流
  • 线程隔离
  • 服务熔断

这些方案或多或少都会导致服务的体验上略有下降,比如请求限流,降低了并发上限;线程隔离,降低了可用资源数量;服务熔断,降低了服务的完整度,部分服务变的不可用或弱可用。因此这些方案都属于服务降级的方案。但通过这些方案,服务的健壮性得到了提升,

1.1.请求限流

服务故障最重要原因,就是并发太高!解决了这个问题,就能避免大部分故障。当然,接口的并发不是一直很高,而是突发的。因此请求限流,就是限制或控制接口访问的并发流量,避免服务因流量激增而出现故障。

请求限流往往会有一个限流器,数量高低起伏的并发请求曲线,经过限流器就变的非常平稳。这就像是水电站的大坝,起到蓄水的作用,可以通过开关控制水流出的大小,让下游水流始终维持在一个平稳的量。
在这里插入图片描述

1.2.线程隔离

当一个业务接口响应时间长,而且并发高时,就可能耗尽服务器的线程资源,导致服务内的其它接口受到影响。所以我们必须把这种影响降低,或者缩减影响的范围。线程隔离正是解决这个问题的好办法。

线程隔离的思想来自轮船的舱壁模式:

在这里插入图片描述
轮船的船舱会被隔板分割为N个相互隔离的密闭舱,假如轮船触礁进水,只有损坏的部分密闭舱会进水,而其他舱由于相互隔离,并不会进水。这样就把进水控制在部分船体,避免了整个船舱进水而沉没。

为了避免某个接口故障或压力过大导致整个服务不可用,我们可以限定每个接口可以使用的资源范围,也就是将其“隔离”起来。
在这里插入图片描述

如图所示,我们给查询购物车业务限定可用线程数量上限为20,这样即便查询购物车的请求因为查询商品服务而出现故障,也不会导致服务器的线程资源被耗尽,不会影响到其它接口。

1.3.服务熔断

线程隔离虽然避免了雪崩问题,但故障服务(商品服务)依然会拖慢购物车服务(服务调用方)的接口响应速度。而且商品查询的故障依然会导致查询购物车功能出现故障,购物车业务也变的不可用了。

所以,我们要做两件事情:

  • 编写服务降级逻辑:就是服务调用失败后的处理逻辑,根据业务场景,可以抛出异常,也可以返回友好提示或默认数据。
  • 异常统计和熔断:统计服务提供方的异常比例,当比例过高表明该接口会影响到其它服务,应该拒绝调用该接口,而是直接走降级逻辑。
    在这里插入图片描述

2.Sentinel

微服务保护的技术有很多,但在目前国内使用较多的还是Sentinel,所以接下来我们学习Sentinel的使用。

2.1.介绍和安装

Sentinel是阿里巴巴开源的一款服务保护框架,目前已经加入SpringCloudAlibaba中。

官方网站:https://sentinelguard.io/zh-cn/

在这里插入图片描述

Sentinel 的使用可以分为两个部分:

  • 核心库(Jar包):不依赖任何框架/库,能够运行于 Java 8 及以上的版本的运行时环境,同时对 Dubbo / Spring Cloud 等框架也有较好的支持。在项目中引入依赖即可实现服务限流、隔离、熔断等功能。
  • 控制台(Dashboard):Dashboard 主要负责管理推送规则、监控、管理机器信息等。

为了方便监控微服务,我们先把Sentinel的控制台搭建出来。
1)下载jar包
下载地址:https://github.com/alibaba/Sentinel/releases
2)运行
将jar包放在任意非中文、不包含特殊字符的目录下,重命名为sentinel-dashboard.jar:
在这里插入图片描述
然后运行如下命令启动控制台:

java -Dserver.port=8090 -Dcsp.sentinel.dashboard.server=localhost:8090 -Dproject.name=sentinel-dashboard -jar sentinel-dashboard.jar

其它启动时可配置参数可参考官方文档:https://github.com/alibaba/Sentinel/wiki/%E5%90%AF%E5%8A%A8%E9%85%8D%E7%BD%AE%E9%A1%B9
在这里插入图片描述
3)访问
访问http://localhost:8090页面,就可以看到sentinel的控制台了:
在这里插入图片描述
需要输入账号和密码,默认都是:sentinel
登录后,即可看到控制台,默认会监控sentinel-dashboard服务本身:
在这里插入图片描述

2.2.微服务整合

我们在cart-service模块中整合sentinel,连接sentinel-dashboard控制台,步骤如下:
1)引入sentinel依赖

<!--sentinel-->
<dependency><groupId>com.alibaba.cloud</groupId> <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>

2)配置控制台
修改application.yaml文件,添加下面内容:

spring:cloud: sentinel:transport:dashboard: localhost:8090

3)访问cart-service的任意端点
重启cart-service,然后访问查询购物车接口,sentinel的客户端就会将服务访问的信息提交到sentinel-dashboard控制台。并展示出统计信息:
在这里插入图片描述
点击簇点链路菜单,会看到下面的页面:
在这里插入图片描述
所谓簇点链路,就是单机调用链路,是一次请求进入服务后经过的每一个被Sentinel监控的资源。默认情况下,Sentinel会监控SpringMVC的每一个Endpoint(接口)。
因此,我们看到/carts这个接口路径就是其中一个簇点,我们可以对其进行限流、熔断、隔离等保护措施。

不过,需要注意的是,我们的SpringMVC接口是按照Restful风格设计,因此购物车的查询、删除、修改等接口全部都是/carts路径:
在这里插入图片描述
默认情况下Sentinel会把路径作为簇点资源的名称,无法区分路径相同但请求方式不同的接口,查询、删除、修改等都被识别为一个簇点资源,这显然是不合适的。

所以我们可以选择打开Sentinel的请求方式前缀,把请求方式 + 请求路径作为簇点资源名:
首先,在cart-service的application.yml中添加下面的配置:

spring:cloud:sentinel:transport:dashboard: localhost:8090http-method-specify: true # 开启请求方式前缀

然后,重启服务,通过页面访问购物车的相关接口,可以看到sentinel控制台的簇点链路发生了变化:
在这里插入图片描述

3.请求限流

在簇点链路后面点击流控按钮,即可对其做限流配置
在这里插入图片描述
在弹出的菜单中这样填写:
在这里插入图片描述
这样就把查询购物车列表这个簇点资源的流量限制在了每秒6个,也就是最大QPS为6.

我们利用Jemeter做限流测试,我们每秒发出10个请求:
在这里插入图片描述
最终监控结果如下:
在这里插入图片描述
可以看出GET:/carts这个接口的通过QPS稳定在6附近,而拒绝的QPS在4附近,符合我们的预期。

4.线程隔离

限流可以降低服务器压力,尽量减少因并发流量引起的服务故障的概率,但并不能完全避免服务故障。一旦某个服务出现故障,我们必须隔离对这个服务的调用,避免发生雪崩。

比如,查询购物车的时候需要查询商品,为了避免因商品服务出现故障导致购物车服务级联失败,我们可以把购物车业务中查询商品的部分隔离起来,限制可用的线程资源:

在这里插入图片描述
这样,即便商品服务出现故障,最多导致查询购物车业务故障,并且可用的线程资源也被限定在一定范围,不会导致整个购物车服务崩溃。

所以,我们要对查询商品的FeignClient接口做线程隔离。

4.1.OpenFeign整合Sentinel

修改cart-service模块的application.yml文件,开启Feign的sentinel功能:

feign:sentinel:enabled: true # 开启feign对sentinel的支持

然后重启cart-service服务,可以看到查询商品的FeignClient自动变成了一个簇点资源
在这里插入图片描述

4.2.配置线程隔离

接下来,点击查询商品的FeignClient对应的簇点资源后面的流控按钮:
在这里插入图片描述
在弹出的表单中填写下面内容:
在这里插入图片描述
注意,这里勾选的是并发线程数限制,也就是说这个查询功能最多使用5个线程,而不是5QPS。如果查询商品的接口每秒处理2个请求,则5个线程的实际QPS在10左右,而超出的请求自然会被拒绝。
在这里插入图片描述
我们利用Jemeter测试,每秒发送100个请求:
在这里插入图片描述
最终测试结果如下:
在这里插入图片描述
进入查询购物车的请求每秒大概在100,而在查询商品时却只剩下每秒10左右,符合我们的预期。

此时如果我们通过页面访问购物车的其它接口,例如添加购物车、修改购物车商品数量,发现不受影响:
[图片]
响应时间非常短,这就证明线程隔离起到了作用,尽管查询购物车这个接口并发很高,但是它能使用的线程资源被限制了,因此不会影响到其它接口。

5.服务熔断

我们利用线程隔离对查询购物车业务进行隔离,保护了购物车服务的其它接口。由于查询商品的功能耗时较高(我们模拟了500毫秒延时),再加上线程隔离限定了线程数为5,导致接口吞吐能力有限,最终QPS只有10左右。这就导致了几个问题:

  • 第一,超出的QPS上限的请求就只能抛出异常,从而导致购物车的查询失败。但从业务角度来说,即便没有查询到最新的商品信息,购物车也应该展示给用户,用户体验更好。也就是给查询失败设置一个降级处理逻辑。
  • 第二,由于查询商品的延迟较高(模拟的500ms),从而导致查询购物车的响应时间也变的很长。这样不仅拖慢了购物车服务,消耗了购物车服务的更多资源,而且用户体验也很差。对于商品服务这种不太健康的接口,我们应该直接停止调用,直接走降级逻辑,避免影响到当前服务。也就是将商品查询接口熔断

5.1.编写降级逻辑

触发限流或熔断后的请求不一定要直接报错,也可以返回一些默认数据或者友好提示,用户体验会更好。
给FeignClient编写失败后的降级逻辑有两种方式:

  • 方式一:FallbackClass,无法对远程调用的异常做处理
  • 方式二:FallbackFactory,可以对远程调用的异常做处理,我们一般选择这种方式。

这里我们演示方式二的失败降级处理。
步骤一:在hm-api模块中给ItemClient定义降级处理类,实现FallbackFactory:

在这里插入图片描述
代码如下:

package com.hmall.api.client.fallback;import com.hmall.api.client.ItemClient;
import com.hmall.api.dto.ItemDTO;
import com.hmall.api.dto.OrderDetailDTO;
import com.hmall.common.exception.BizIllegalException;
import com.hmall.common.utils.CollUtils;
import lombok.extern.slf4j.Slf4j;
import org.springframework.cloud.openfeign.FallbackFactory;import java.util.Collection;
import java.util.List;@Slf4j
public class ItemClientFallback implements FallbackFactory<ItemClient> {@Overridepublic ItemClient create(Throwable cause) {return new ItemClient() {@Overridepublic List<ItemDTO> queryItemByIds(Collection<Long> ids) {log.error("远程调用ItemClient#queryItemByIds方法出现异常,参数:{}", ids, cause);// 查询购物车允许失败,查询失败,返回空集合return CollUtils.emptyList();}@Overridepublic void deductStock(List<OrderDetailDTO> items) {// 库存扣减业务需要触发事务回滚,查询失败,抛出异常throw new BizIllegalException(cause);}};}
}

步骤二:在hm-api模块中的com.hmall.api.config.DefaultFeignConfig类中将ItemClientFallback注册为一个Bean:
在这里插入图片描述
步骤三:在hm-api模块中的ItemClient接口中使用ItemClientFallbackFactory:

在这里插入图片描述
重启后,再次测试,发现被限流的请求不再报错,走了降级逻辑:
在这里插入图片描述
但是未被限流的请求延时依然很高:
在这里插入图片描述
导致最终的平局响应时间较长。

5.2.服务熔断

查询商品的RT较高(模拟的500ms),从而导致查询购物车的RT也变的很长。这样不仅拖慢了购物车服务,消耗了购物车服务的更多资源,而且用户体验也很差。

对于商品服务这种不太健康的接口,我们应该停止调用,直接走降级逻辑,避免影响到当前服务。也就是将商品查询接口熔断。当商品服务接口恢复正常后,再允许调用。这其实就是断路器的工作模式了。

Sentinel中的断路器不仅可以统计某个接口的慢请求比例,还可以统计异常请求比例。当这些比例超出阈值时,就会熔断该接口,即拦截访问该接口的一切请求,降级处理;当该接口恢复正常时,再放行对于该接口的请求。

状态机

断路器的工作状态切换有一个状态机来控制:

在这里插入图片描述
状态机包括三个状态:

  • closed:关闭状态,断路器放行所有请求,并开始统计异常比例、慢请求比例。超过阈值则切换到open状态
  • open:打开状态,服务调用被熔断,访问被熔断服务的请求会被拒绝,快速失败,直接走降级逻辑。Open状态持续一段时间后会进入half-open状态
  • half-open:半开状态,放行一次请求,根据执行结果来判断接下来的操作。
    • 请求成功:则切换到closed状态
    • 请求失败:则切换到open状态

我们可以在控制台通过点击簇点后的熔断按钮来配置熔断策略:
在这里插入图片描述
在弹出的表格中这样填写:
在这里插入图片描述
这种是按照慢调用比例来做熔断,上述配置的含义是:

  • RT超过200毫秒的请求调用就是慢调用
  • 统计最近1000ms内的最少5次请求,如果慢调用比例不低于0.5,则触发熔断
  • 熔断持续时长20s

配置完成后,再次利用Jemeter测试,可以发现:
在这里插入图片描述
在一开始一段时间是允许访问的,后来触发熔断后,查询商品服务的接口通过QPS直接为0,所有请求都被熔断了。而查询购物车的本身并没有受到影响。
此时整个购物车查询服务的平均RT影响不大:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/207013.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

每日一练2023.11.30——验证身份【PTA】

题目链接 &#xff1a;验证身份 题目要求&#xff1a; 一个合法的身份证号码由17位地区、日期编号和顺序编号加1位校验码组成。校验码的计算规则如下&#xff1a; 首先对前17位数字加权求和&#xff0c;权重分配为&#xff1a;{7&#xff0c;9&#xff0c;10&#xff0c;5&a…

Unity3D 导出的apk进行混淆加固、保护与优化原理(防止反编译)

Unity3D 导出的apk进行混淆加固、保护与优化原理&#xff08;防止反编译&#xff09; 目录 前言&#xff1a; 准备资料&#xff1a; 正文&#xff1a; 1&#xff1a;打包一个带有签名的apk 2&#xff1a;对包进行反编译 3&#xff1a;使用ipaguard来对程序进行加固 前言&…

redis运维(二十一)redis 的扩展应用 lua(三)

一 redis 的扩展应用 lua redis加载lua脚本文件 ① 调试lua脚本 redis-cli 通过管道 --pipe 快速导入数据到redis中 ② 预加载方式 1、错误方式 2、正确方式 "案例讲解" ③ 一次性加载 执行命令&#xff1a; redis-cli -a 密码 --eval Lua脚本路径 key …

kNN-NER: Named Entity Recognition with Nearest Neighbor Search

原文链接&#xff1a;https://arxiv.org/pdf/2203.17103.pdf 预发表论文 介绍 受到增强式检索方法的启发&#xff0c;作者提出了kNN-NER&#xff0c;通过检索训练集中k个邻居的标签分布来提高模型命名实体识别分类的准确性。该框架能够通过充分利用训练信息来解决样本类别不平衡…

C++:OJ练习(每日练习系列)

编程题&#xff1a; 题一&#xff1a;字符串相加 415. 字符串相加 - 力扣&#xff08;LeetCode&#xff09; 思路一&#xff1a; 第一步&#xff1a;需要获取字符串的两个尾节点下标&#xff1b; 第二步&#xff1a;创建用于记录进位数、获得的字符串的变量&#xff1b; 第…

nginx部署多个vue或react项目

下载nginx(tar.gz) nginx: download(官方地址) 部署nginx # 进入nginx压缩包所在目录 cd /usr/nginx# 解压 tar -zxvf nginx-1.25.3.tar.gz# 安装nginx的相关依赖 yum -y install gcc zlib zlib-devel pcre-devel openssl openssl-devel# 生成Makefile可编译文件 cd /usr/ng…

SQL Sever 基础知识 - 数据查询

SQL Sever 基础知识 - 一、查询数据 一、查询数据第1节 基本 SQL Server 语句SELECT第2节 SELECT语句示例2.1 SELECT - 检索表示例的某些列2.2 SELECT - 检索表的所有列2.3 SELECT - 对结果集进行筛选2.4 SELECT - 对结果集进行排序2.5 SELECT - 对结果集进行分组2.5 SELECT - …

富必达API:一站式无代码开发集成电商平台、CRM和营销系统

一站式无代码开发的连接解决方案 电子商务、客户服务系统以及其它商业应用&#xff0c;是现代企业运营的重要部分。然而&#xff0c;将这些系统进行有效的整合往往需要复杂的API开发&#xff0c;这对很多企业来说是一个巨大的挑战。富必达API以其一站式的无代码开发解决方案&a…

注解方式优雅的实现Redisson分布式锁

1.前言 随着微服务的快速推进&#xff0c;分布式架构也得到蓬勃的发展&#xff0c;那么如何保证多进程之间的并发则成为需要考虑的问题。因为服务是分布式部署模式&#xff0c;本地锁Reentrantlock和Synchnorized就无法使用了&#xff0c;当然很多同学脱口而出的基于Redis的se…

C语言--每日选择题--Day31

第一题 1. 下面程序 i 的值为&#xff08;&#xff09; int main() {int i 10;int j 0;if (j 0)i; elsei--; return 0; } A&#xff1a;11 B&#xff1a;9 答案及解析 B if语句中的条件判断为赋值语句的时候&#xff0c;因为赋值语句的返回值是右操作数&#xff1b; …

【猜数字游戏】用wxPython实现:基本的游戏框架 + 简单的图形用户界面

【猜数字游戏】 写在最前面猜数字游戏 实现【猜数字游戏】安装wxPython全部代码代码解析1. 初始化界面2. 生成随机数3. 处理猜测4. 特殊功能5. 分数计算 游戏小程序呈现结语 写在最前面 看到了一个比较有意思的问题 https://ask.csdn.net/questions/8038039 猜数字游戏 在这…

Linux系统iptables

目录 一. 防火墙简介 1. 防火墙定义 2. 防火墙分类 ①. 网络层防火墙 ②. 应用层防火墙 二. iptables 1. iptables定义 2. iptables组成 ①. 规则表 ②. 规则链 3. iptables格式 ①. 管理选项 ②. 匹配条件 ③. 控制类型 四. 案例说明 1. 查看规则表 2. 增加新…

Node——Node.js简介

Node.js是一个基于Chrome V8引擎的JavaScript运行时环境&#xff0c;它能够让JavaScript脚本运行在服务端&#xff0c;这使得JavaScript成为与PHP、Python等服务端语言平起平坐的脚本语言。 1、认识Node.js Node.js是当今网站开发中非常流行的一种技术&#xff0c;它以简单易…

防爆执法记录仪、防爆智能安全帽助力海上钻井平台远程可视化监管平台建设

推动远程安全管理&#xff0c;海上钻井"视"界拓新—防爆执法记录仪与防爆智能安全帽的创新应用 在海上钻井作业领域&#xff0c;安全生产一直是萦绕在每一个业者心头的重大课题。由于环境的恶劣及作业的特殊性&#xff0c;一旦发生安全事故&#xff0c;其后果往往极…

SQL Sever 基础知识 - 数据排序

SQL Sever 基础知识 - 二 、数据排序 二 、对数据进行排序第1节 ORDER BY 子句简介第2节 ORDER BY 子句示例2.1 按一列升序对结果集进行排序2.2 按一列降序对结果集进行排序2.3 按多列对结果集排序2.4 按多列对结果集不同排序2.5 按不在选择列表中的列对结果集进行排序2.6 按表…

深入学习redis-基于Jedis通过客户端操作Redis

目录 redis客户端&#xff08;JAVA&#xff09; 配置 引入依赖 建立连接 常用命令实现 get/set exists/del keys expire和ttl type 字符串&#xff08;String&#xff09; mget和mset getrange和setrange append incr和decr 列表&#xff08;list&#xff09; …

STM32F407-14.3.7-01PWM输入模式

PWM 输入模式 此模式是输入捕获模式的一个特例。其实现步骤与输入捕获模式基本相同&#xff0c;仅存在以下不同之处&#xff1a; 例如&#xff0c;可通过以下步骤对应用于 TI1① 的 PWM 的周期&#xff08;位于 TIMx_CCR1⑨ 寄存器中&#xff09;和占空 比&#xff08;位于 …

Echarts 柱状图添加标记 最大值 最小值 平均值

标记 最大值 最小值 series: [//图表配置项 如大小&#xff0c;图表类型{name: 图例,type: bar,//图表类型data: [{value: 500,time: 2012-11-12},{value: 454,time: 2020-5-17},{value: 544,time: 2022-1-22},{value: 877,time: 2013-1-30}, {value: 877,time: 2012-11-12}] …

深入了解Rabbit加密技术:原理、实现与应用

一、引言 在信息时代&#xff0c;数据安全愈发受到重视&#xff0c;加密技术作为保障信息安全的核心手段&#xff0c;得到了广泛的研究与应用。Rabbit加密技术作为一种新型加密方法&#xff0c;具有较高的安全性和便捷性。本文将对Rabbit加密技术进行深入探讨&#xff0c;分析…

【深度学习】概率图模型(一)概率图模型理论简介

文章目录 一、概率图模型1. 联合概率表2. 条件独立性假设3. 三个基本问题 二、模型表示1. 有向图模型&#xff08;贝叶斯网络&#xff09;2. 无向图模型&#xff08;马尔可夫网络&#xff09; 三、学习四、推断 概率图模型&#xff08;Probabilistic Graphical Model&#xff0…