10分钟上手DeepSeek开发:SpringBoot + Vue2快速构建AI对话系统

作者:后端小肥肠

目录

1. 前言

为什么选择DeepSeek?

本文技术栈

2. 环境准备

2.1. 后端项目初始化

2.2. 前端项目初始化

3. 后端服务开发

3.1. 配置文件

3.2. 核心服务实现

4. 前端服务开发

4.1. 聊天组件ChatWindow.vue开发

5. 效果展示及源码获取

5.1. 效果展示

5.2. 源码获取

6. 结语

7. 参考链接


1. 前言

随着人工智能技术的快速发展,大语言模型在企业和个人应用中扮演着越来越重要的角色。作为国产大语言模型的新秀,DeepSeek以其出色的中文理解能力和开放的API接口,为开发者提供了构建AI应用的新选择。

在本文中,我将带领大家使用SpringBoot和Vue技术栈,快速搭建一个具有实时对话功能的AI助手系统。这个系统不仅支持流式响应,还具备优雅的界面展示和Markdown格式的内容渲染,让AI回答更加清晰易读。

为什么选择DeepSeek?

  • 优秀的中文理解能力,对中文语境的把握更加准确
  • 开放友好的API接口,支持流式输出
  • 合理的定价策略,适合个人开发者和小型企业
  • 部署在国内服务器,响应速度快,无需科学上网

本文技术栈

后端:

  • SpringBoot 2.x
  • WebSocket/WebFlux:实现实时数据流传输
  • Lombok:简化Java代码
  • Jackson:JSON处理

前端:

  • Vue 2.x
  • SockJS:处理WebSocket通信
  • Marked:Markdown渲染
  • DOMPurify:防止XSS攻击

让我们开始动手实践,用短短10分钟时间,搭建一个专业的AI对话系统!

2. 环境准备

  • JDK 8+
  • Node.js 12+
  • Maven 3.6+
  • IDE(推荐IntelliJ IDEA)
  • DeepSeek API密钥

DeepSpeek API秘钥可以用硅基流动来获取,不知道具体方法的可以参考我的另外一篇博客。DeepSpeek服务器繁忙?这几种替代方案帮你流畅使用!(附本地部署教程)-CSDN博客

2.1. 后端项目初始化

创建maven工程:

新增pom依赖:

<dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-webflux</artifactId></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId></dependency>
</dependencies>

2.2. 前端项目初始化

vue create xfc-deepspeek-front
cd xfc-deepspeek-front
npm install sockjs-client marked dompurify

3. 后端服务开发

3.1. 配置文件

server:port: 8080spring:application:name: xfc-deepspeekwebflux:base-path: /codec:max-in-memory-size: 10MBdeepseek:api-url: https://api.siliconflow.cn/v1/chat/completionsapi-key: your_api_key_herelogging:level:com.xfc: DEBUG

3.2. 核心服务实现

@Slf4j
@Service
@RequiredArgsConstructor
public class DeepSeekService {private final DeepSeekConfig config;private final WebClient.Builder webClientBuilder;public Flux<String> handleChatWebSocket(String question) {return sendChatRequest(question).doOnNext(response -> log.info("发送响应: {}", response)).onErrorResume(e -> {log.error("WebSocket通信错误: {}", e.getMessage());return Flux.just("抱歉,服务器处理请求时发生错误,请稍后重试。");});}// ... 其他实现代码见完整源文件
}

DeepSeekService 是一个核心服务类,主要负责处理与 DeepSeek API 的通信和数据处理,包含三个主要功能模块:

命令行交互功能(startInteractiveChat方法):

提供命令行方式与AI对话,支持问答记录保存到本地文件。用户可以输入问题,实时查看AI响应,并自动保存对话历史。

WebSocket通信功能(handleChatWebSocket方法):

处理前端WebSocket请求,将用户问题转发给DeepSeek API,并将响应通过WebSocket返回给前端。包含错误处理机制,确保通信稳定性。

API请求处理功能(sendChatRequest方法):

负责与DeepSeek API的具体通信实现。使用WebClient发送异步请求,支持流式响应处理。包含完善的错误处理机制,如超时控制(60秒)、重试机制(最多3次,间隔2秒)、异常处理等。对API响应进行JSON解析,提取有效内容。

整个服务采用响应式编程模式(Flux),实现非阻塞式处理,提高系统性能。同时通过日志记录、错误重试、优雅降级等机制,确保服务的可靠性和稳定性。saveToFile方法提供了对话历史的本地存储功能,支持时间戳记录。

4. 前端服务开发

4.1. 聊天组件ChatWindow.vue开发

<template><div class="chat-container"><div class="message-container" ref="messageContainer"><div v-for="(message, index) in messages" :key="index":class="['message', message.type + '-message']"><div v-if="message.type === 'bot'" v-html="renderMarkdown(message.content)"></div><div v-else>{{ message.content }}</div></div></div><!-- ... 其他模板代码 --></div>
</template><script>
import SockJS from 'sockjs-client';
import { marked } from 'marked';
import DOMPurify from 'dompurify';export default {name: 'ChatWindow',// ... 完整实现代码见源文件
}
</script>

这个 ChatWindow.vue 组件是一个完整的聊天界面实现,主要分为三个部分:

界面结构部分使用了 flex 布局,包含消息显示区、输入区和连接状态提示区。消息显示区支持滚动和自动定位到最新消息,输入区包含输入框和发送按钮,状态区显示连接情况。

功能实现部分主要通过 WebSocket 实现实时通信。initWebSocket 方法负责建立连接,包含连接成功、接收消息、错误处理和断开重连等完整生命周期管理。消息发送和接收通过 sendMessageappendMessage 方法处理,支持用户消息和机器人回复的区分显示。特别的是,通过 marked 库实现了 Markdown 格式的渲染,并使用 DOMPurify 防止 XSS 攻击。

样式设计部分为不同类型的消息(用户消息、机器人回复、错误提示)定义了不同的样式,并通过 :deep 选择器为 Markdown 内容添加了详细的样式支持,包括标题、代码块、表格、列表等多种格式的样式定义,确保内容展示的专业性和美观性。整体设计注重用户体验,包含了状态提示、错误处理等完善机制。

5. 效果展示及源码获取

5.1. 效果展示

后端日志:

上图显示了项目运行时的日志信息,记录了 WebSocket 连接和 DeepSeek 服务的交互过程,包括消息接收和响应的详细日志。

系统界面:

上图为AI 对话系统的用户界面截图。整个界面支持 Markdown 格式的渲染,使得回答内容层次分明,易于阅读。

后台链接断开提示:

5.2. 源码获取

关注gzh后端小肥肠,点击【资源】菜单即可获取完整源码。

6. 结语

通过本文的实践,我们成功搭建了一个基于SpringBoot和Vue的AI对话系统。该系统具有以下特点:

实时对话:基于WebSocket的流式响应

优雅展示:支持Markdown格式渲染

稳定可靠:完善的错误处理机制

易于扩展:清晰的代码结构

获取源码后可以自行扩展优化方向,如加入除DeepSpeek之外的其他模型的API,记录会话历史,集成RAG,感兴趣的朋友可以点个关注,小肥肠将持续更新DeepSpeek更多进阶玩法~

7. 参考链接

DeepSeek API 调用 - Spring Boot 实现_deepseek-spring-boot-starter-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/20816.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Coze扣子怎么使用更强大doubao1.5模型

最近&#xff0c;豆包刚刚发布了最新的doubao1.5系列模型&#xff0c;并且加量不加价。 在性能极大进步的情况下&#xff0c;价格还与之前一致。真是业界良心了。 在同样的价格下&#xff0c;肯定要使用性能更强大的模型嘛 于是我准备把所有的智能体和工作流切换到doubao1.5…

UEditorPlus v4.3.0 已知问题修复,表格自适应,全屏编辑优化

UEditor 是由百度开发的所见即所得的开源富文本编辑器&#xff0c;基于MIT开源协议&#xff0c;该富文本编辑器帮助不少网站开发者解决富文本编辑器的难点。 UEditorPlus 是有 ModStart 团队基于 UEditor 二次开发的富文本编辑器&#xff0c;主要做了样式的定制&#xff0c;更…

【核心算法篇十四】《深度解密DeepSeek量子机器学习:VQE算法加速的黑科技与工程实践》

在经典计算机逼近物理极限的今天,量子计算正以指数级加速潜力颠覆传统计算范式。想象一下,一个需要超级计算机运算千年的化学分子模拟问题,用量子计算机可能只需几分钟——这就是DeepSeek团队在VQE(Variational Quantum Eigensolver)算法加速实践中创造的奇迹。根据,VQE作…

Hackthebox- Season7- Titanic 简记 [Easy]

简记 ip重定向到 http://titanic.htb,先添加hosts 收集子域名 wfuzz -c -u http://titanic.htb/ -w /usr/share/seclists/Discovery/DNS/subdomains-top1million-20000.txt -H Host:FUZZ.titanic.htb --hl 9 ******************************************************** * Wfu…

【C语言】C语言 哈夫曼编码传输(源码+数据文件)【独一无二】

&#x1f449;博__主&#x1f448;&#xff1a;米码收割机 &#x1f449;技__能&#x1f448;&#xff1a;C/Python语言 &#x1f449;专__注&#x1f448;&#xff1a;专注主流机器人、人工智能等相关领域的开发、测试技术。 C语言 哈夫曼编码传输&#xff08;源码数据文件&am…

撕碎QT面具(6):调节窗口大小后,控件被挤得重叠的解决方法

问题&#xff1a;控件重叠 分析原因&#xff1a;因为设置了最小大小&#xff0c;所以界面中的大小不会随窗口的变化而自动变化。 处理方案&#xff1a;修改mimumSize的宽度与高度为0&#xff0c;并设置sizePolicy为Expanding&#xff0c;让其自动伸缩。 结果展示&#xff08;自…

Leetcode - 周赛436

目录 一、3446. 按对角线进行矩阵排序二、3447. 将元素分配给有约束条件的组三、3448. 统计可以被最后一个数位整除的子字符串数目四、3449. 最大化游戏分数的最小值 一、3446. 按对角线进行矩阵排序 题目链接 本题可以暴力枚举&#xff0c;在确定了每一个对角线的第一个元素…

玩转SpringCloud Stream

背景及痛点 现如今消息中间件(MQ)在互联网项目中被广泛的应用&#xff0c;特别是大数据行业应用的特别的多&#xff0c;现在市面上也流行这多个消息中间件框架&#xff0c;比如ActiveMQ、RabbitMQ、RocketMQ、Kafka等&#xff0c;这些消息中间件各有各的优劣&#xff0c;但是想…

解决 Mac 只显示文件大小,不显示目录大小

前言 在使用 mac 的时候总是只显示文件的大小&#xff0c;不显示文件夹的大小&#xff0c;为了解决问题可以开启“计算文件夹”。 步骤 1.进入访达 2.工具栏点击“显示”选项&#xff0c;点击 “查看显示选项” 3.勾选 显示“资源库"文件夹 和 计算所有大小 或者点击…

STM32 定时器产生定周期方法

目录 背景 程序 第一步、使能PCLK1外设时钟​编辑 第二步、时基单元配置 第三步、配置NVIC&#xff08;设置定时中断优先级&#xff09;​编辑 第四步、使能溢出中断 第五步、使能定时器 第六步、填写中断处理函数&#xff08;ISR&#xff09; 背景 在单片机开发当中&…

【DeepSeek系列】04 DeepSeek-R1:带有冷启动的强化学习

文章目录 1、简介2、主要改进点3、两个重要观点4、四阶段后训练详细步骤4.1 冷启动4.2 推理导向的强化学习4.3 拒绝采样和有监督微调4.4 针对所有场景的强化学习 5、蒸馏与强化学习对比6、评估6.1 DeepSeek-R1 评估6.2 蒸馏模型评估 7、结论8、局限性与未来方向 1、简介 DeepS…

Compose常用UI组件

Compose常用UI组件 概述Modifier 修饰符常用Modifier修饰符作用域限定Modifier Modifier 实现原理Modifier.Element链的构建链的解析 常用基础组件文字组件图片组件按钮组件选择器对话框进度条 常用布局组件线性布局帧布局 列表组件 概述 Compose 预置了很多基础组件&#xff…

Ansys EMC Plus:HIRF 与飞机耦合演示

在本篇博文中&#xff0c;我们将深入探讨 EMC Plus 高强度辐射场 (HIRF) 与软件示例中提供的飞机演示的耦合。本概述将指导您完成整个工作流程&#xff0c;从设置问题空间到基本后处理&#xff0c;包括材料属性分配和创建探针。 概述 在本演示中&#xff0c;下图所示的预先简化…

DeepSeek + Mermaid编辑器——常规绘图

下面这张图出自&#xff1a;由清华大学出品的 《DeepSeek&#xff1a;从入门到精通》。 作为纯文本生成模型&#xff0c;DeepSeek虽不具备多媒体内容生成接口&#xff0c;但其开放式架构允许通过API接口与图像合成引擎、数据可视化工具等第三方系统进行协同工作&#xff0c;最终…

红蓝对抗之常见网络安全事件研判、了解网络安全设备、Webshell入侵检测

文章目录 ​​研判&#xff08;入侵检测&#xff09;​​ ​​设备​​ ​​经典网络​​​​云网络​​ ​​异常HTTP请求​​​​Webshell分析​​ ​​Webshell 的分类​​​​Webshell 的检测​​ ​​主机层面​​​​流量层面​​ ​​附录​​ ​​常见端口漏洞…

基于levmar(Levenberg-Marquardt 非线性最小二乘优化库)的椭圆拟合

1. 包含必要的头文件 #include <opencv2/core.hpp> #include <opencv2/imgproc.hpp> #include <opencv2/highgui.hpp> #include <vector> #include <cmath>2. 定义生成椭圆点的函数 编写一个函数&#xff0c;接受椭圆的中心坐标、长轴半径、短…

Fastgpt学习(5)- FastGPT 私有化部署问题解决

1.☺ 问题描述&#xff1a; Windows系统&#xff0c;本地私有化部署&#xff0c;postgresql数据库镜像日志持续报错" data directory “/var/lib/postgresql/data” has invalid permissions "&#xff0c;“ DETAIL: Permissions should be urwx (0700) or urwx,gr…

基于SpringBoot+vue粮油商城小程序系统

粮油商城小程序为用户提供方便快捷的在线购物体验&#xff0c;包括大米、面粉、食用油、调味品等各种粮油产品的选购&#xff0c;用户可以浏览商品详情、对比价格、下单支付等操作。同时&#xff0c;商城还提供优惠活动、积分兑换等福利&#xff0c;让用户享受到更多实惠和便利…

Python编程之数据分组

有哪些方式可以进行数据分组利用Pandas库进行分组使用itertools库的groupby分组操作构建Python字典方式实现(小规模数据,不适用数量特别大的情况,不需要依赖其它python库)利用NumPy的groupby函数分组操作利用Python的Dask库提供的函数进行分组下面看一个如何去实现坐标数据…

【Linux】认识协议、Mac/IP地址和端口号、网络字节序、socket套接字

⭐️个人主页&#xff1a;小羊 ⭐️所属专栏&#xff1a;Linux 很荣幸您能阅读我的文章&#xff0c;诚请评论指点&#xff0c;欢迎欢迎 ~ 目录 1、初识协议2、Mac、IP地址3、端口号4、网络字节序5、socket 1、初识协议 协议就是一种约定。如何让不同厂商生产的计算机之间能…