GPT实战系列-大模型训练和预测,如何加速、降低显存

GPT实战系列-大模型训练和预测,如何加速、降低显存

不做特别处理,深度学习默认参数精度为浮点32位精度(FP32)。大模型参数庞大,10-1000B级别,如果不注意优化,既耗费大量的显卡资源,也耗费大量的训练时间,AI算法中心的训练的投入都给英伟达送钱去了。有的地方32位精度没有太大必要,这就是浮点精度和量化的动力来源。

大模型的训练和预测过程中,如何加快训练速度?如何降低显存占用?
有哪些简单,快速上手的方法?

文章目录

  • GPT实战系列-大模型训练和预测,如何加速、降低显存
    • 混合精度
      • 精度数位表示
      • 转换流程
    • 量化
      • 量化训练
      • 量化推理

混合精度

混合精度训练(mixed precision training)是一种加速深度学习训练的技术。其主要思想是在精度降低可忍受的范围内,使用较低精度的浮点数(如FP16)来表示神经网络中的权重和激活值,从而减少内存使用和计算开销,进而加速训练过程。

混合精度训练的实现可以分为以下几个步骤:

  1. 将FP32的权重转换为FP16格式,然后进行前向计算,得到FP32的损失(loss)。
  2. 使用FP16计算梯度。
  3. 将梯度转换为FP32格式,并将其更新到权重上。

由于FP16精度较低,表示的数值范围小,可能会导致精度损失,因此在混合精度训练中,需要使用一些技巧来保持模型的精确性。例如,可以使用梯度缩放(GradScaler)来控制梯度的大小,以避免梯度下降过快而影响模型的准确性。

精度数位表示

  • FP32:单精度浮点数,使用32位二进制数表示,其中1位表示符号位,8位表示指数位,23位表示尾数位,能够表示的数值范围为 ± 3.4 × 1 0 38 ±3.4×10^{38} ±3.4×1038
  • FP16:半精度浮点数,使用16位二进制数表示,其中1位表示符号位,5位表示指数位,10位表示尾数位,能够表示的数值范围为 ± 2 15 ±2^{15} ±215
  • FP64:双精度浮点数,使用64位二进制数表示,其中1位表示符号位,11位表示指数位,52位表示尾数位,能够表示的数值范围为 ± 1.8 × 1 0 308 ±1.8×10^{308} ±1.8×10308
  • INT8:8位整数,其中1位表示符号位,能够表示的数值范围为 $ -128到127$。
  • INT4:4位整数,其中1位表示符号位,能够表示的数值范围为 − 8 到 7 -8到7 87

在这里插入图片描述

  • 转换流程

混合精度训练的流程如下:

  1. 将FP32的权重转换为FP16格式,然后进行前向计算,得到FP32的损失(loss)。
  2. 使用FP16计算梯度。
  3. 将梯度转换为FP32格式,并将其更新到权重上。

在训练过程中,使用autocast将输入和输出转换为FP16格式,使用GradScaler对损失值进行缩放,以避免梯度下降过快而影响模型的准确性。

量化

量化是一种通过整型数值表示浮点的计算方式,减少数字表示的位数来减小模型存储量和计算量的方法。在深度学习中,通常使用32位浮点数来表示权重和激活值。但是,这种精度可能会导致计算和存储的开销非常高。因此,量化使用更短的整数表示权重和激活值,从而减少内存和计算开销。

量化使用整型数值,避免使用浮点处理,加速计算过程,同时也减少用于表示数字或值的比特数,降低存储的技术。将通过将权重存储在低精度数据类型中,来降低模型参数的训练、预测计算过程和模型和中间缓存的存储空间。由于量化减少了模型大小,因此它有利于在CPU或嵌入式系统等资源受限的设备上部署模型。

一种常用的方法是将模型权重从原始的16位浮点值量化为精度较低的8位整数值

8bit 参数量化

GPT,Baichuan2,ChatGLM3等大模型LLM已经展示出色的能力,但是它需要大量的CPU和内存,其中使用一种方法可以使用量化来压缩这些模型,以减少内存占用并加速计算推理,并且尽量保持模型精度性能。


在量化过程中,可以使用两种方法:动态量化和静态量化

  • 动态量化在运行时收集数据,并根据数据动态地量化模型。
  • 静态量化在训练过程中对模型进行量化,并在推理时应用量化。

量化会导致模型精确度下降,因为更低的精度可能会导致舍入误差。因此,在量化期间,需要进行一些技巧来保持模型的准确程度,例如:对权重进行缩放或使用动态范围量化。

同时,在量化模型之前,需要对模型进行测试,确保精确度可以接受。另外,不是所有的模型都可以被量化,只有支持动态量化的模型才可以使用该方法进行量化

例如:load_in_8bit=True

 from transformers import AutoTokenizer, AutoModel model = AutoModel.from_pretrained("THUDM/chatglm3-6b",revision='v0.1.0',load_in_8bit=True,trust_remote_code=True,device_map="auto")

总的来说,量化是一种非常有用的方法,可以减少模型的存储和计算开销,提高模型在设备上的执行效率。

量化训练

在深度学习中,量化是一种通过减少数字表示的位数来减小模型存储量和计算量的方法。在使用混合精度训练时,可以将模型权重和梯度从FP32转换为FP16,以节省内存和加速训练。同样的思路,量化训练可以将激活值转换为更短的整数,从而减少内存和计算开销

PyTorch中提供一些量化训练的工具和API,例如QAT(量化感知训练),使用动态范围量化等。其中,使用Adam8bit进行量化训练是一种方法。

量化推理

使用load_in_8bit方法可以实现模型的量化。该方法可以将模型权重和激活值量化为8位整数,从而减少内存和计算开销。具体实现方法如下:

import torch
from transformers import AutoModel# 加载模型
model = AutoModel.from_pretrained('bert-base-uncased',load_in_8bit=True)

需要注意的是,使用load_in_8bit方法量化模型可能会导致模型精确度下降。另外,不是所有的模型都可以被量化,只有支持动态量化的模型才可以使用该方法进行量化。

点个赞 点个赞 点个赞

觉得有用 收藏 收藏 收藏

End


GPT专栏文章:
GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF


决策引擎专栏:
Falcon构建轻量级的REST API服务

决策引擎-利用Drools实现简单防火墙策略

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/208393.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

十种接口安全方案!!!

其他系列文章导航 Java基础合集数据结构与算法合集 设计模式合集 多线程合集 分布式合集 ES合集 文章目录 其他系列文章导航 文章目录 前言 一、数据加密,防止报文明文传输。 二、数据加签验签 2.1 什么是加签验签呢? 2.2 有了https等加密数据&am…

Maven总结

文章目录 为什么学习Maven?一、Maven项目架构管理工具二、Maven的下载安装及配置1.maven的下载2.maven目录结构3.配置阿里云镜像和本地仓库:4.maven配置环境变量。5.阿里云镜像和本地仓库说明 三、idea中maven的操作1.以模板的形式创建maven项目2.其他配置maven的方式3.不勾模…

从图片或PDF文件识别表格提取内容的简单库img2table

img2table是一个基于OpenCV 图像处理的用于 PDF 和图像的表识别和提取 Python库。由于其设计基于神经网络的解决方案,提供了一种实用且更轻便的替代方案,尤其是在 CPU 上使用时。 该库的特点: 识别图像和PDF文件中的表格,包括在表…

Windows微软常用运行库合集2023

微软常用运行库合集适用于Windows系统的运行库合集包,基于微软官方的运行库而制作的,包括了常用的vb,vc2005/2008/2010/2012/2013/2017/2019/2005-2022,Microsoft Universal C Runtime,VS 2010 Tools For Office Runti…

智慧工地一体化解决方案(里程碑管理)源码

智慧工地为管理人员提供及时、高效、优质的远程管理服务,提升安全管理水平,确保施工安全提高施工质量。实现对人、机、料、法、环的全方位实时监控,变被动“监督”为主动“监控”。 一、建设背景 施工现场有数量多、分布广,总部统…

软件工程--面向对象分析用通俗语言20小时爆肝总结!(包含用例图、活动图、类图、时序图......)

面向对象方法分为面向对象分析(OOA)、面向对象设计(OOD)、面向对象编程(OOP),本文详细介绍面向对象分析 本文参考教材:沈备军老师的《软件工程原理》大多图片来源其中 目录 面向对…

docker部署frp穿透内网

文章目录 (1)部署frps服务器(2)部署frpc客户端(3)重启与访问frp(4)配置nginx反向代理 (1)部署frps服务器 docker安装参考文档:docker基本知识 1…

亚马逊云科技re:Invent大会,助力安全构建规模化生成式AI应用

2023亚马逊云科技re:Invent全球大会进入第三天,亚马逊云科技数据和人工智能副总裁Swami Sivasubramanian博士在周三的主题演讲中,为大家带来了关于亚马逊云科技生成式AI的最新能力、面向生成式AI时代的数据战略以及借助生成式AI应用提高生产效率的精彩分…

基于机器深度学习的交通标志目标识别

在线工具推荐: 三维数字孪生场景工具 - GLTF/GLB在线编辑器 - Three.js AI自动纹理化开发 - YOLO 虚幻合成数据生成器 - 3D模型在线转换 - 3D模型预览图生成服务 智能交通系统(ITS),包括无人驾驶车辆,尽管在道路…

【云备份】业务处理

文章目录 1. 业务处理作用功能 2. 代码框架编写构造函数UpLoad ——文件上传请求ListShow —— 展示页面请求处理实现Download —— 下载请求的处理实现断点续传实现 1. 业务处理 作用 业务处理模块是对客户端的业务请求进行处理 功能 1.文件上传请求:备份客户端…

数据库管理-第120期 初探Halo数据库(202301201)

数据库管理-第120期 初探Halo数据库(202301201) 12月份正好也是第120期,新的一篇文章,尝试一条新的路线。其实吧,Halo(羲和)这个数据库我较早时间就听说过(早于今年DTCC&#xff0c…

Glide结合OkHttp保证短信验证接口携带图形验证码接口返回Cookie值去做网络请求

一、实现效果 二、步骤 注意:仅展示核心部分代码 1、导入依赖 api com.github.bumptech.glide:glide:4.10.0 kapt com.github.bumptech.glide:compiler:4.10.0 api com.squareup.okhttp3:okhttp:3.11.0 api com.squareup.okhttp3:logging-interceptor:3.11.02、自…

【EMFace】《EMface: Detecting Hard Faces by Exploring Receptive Field Pyramids》

arXiv-2021 文章目录 1 Background and Motivation2 Related Work3 Advantages / Contributions4 Method5 Experiments5.1 Datasets and Metrics5.2 Ablation Study5.3 Comparison with State-of-the-Arts 6 Conclusion(own) 1 Background and Motivatio…

腾讯云云服务器功能与优势

腾讯云云服务器(Cloud Virtual Machine,CVM)是腾讯云提供的可扩展的计算服务。使用云服务器 CVM 避免了使用传统服务器时需要预估资源用量及前期投入的问题,帮助您在短时间内快速启动任意数量的云服务器并及时部署应用程序。 云服…

<软考>软件设计师-1计算机组成与结构(总结)

(一)计算机系统基础知识 1 计算机硬件组成 计算机的基本硬件系统由运算器、控制器、存储器、输入设备 和 输出设备 5大部件组成。 1 运算器、控制器等部件被集成在一起统称为中央处理单元(CPU) 。CPU是硬件系统的核心,用于数据的加工处理,能完成各种算…

Linux系统安装Docker-根据官方教程教程(以Ubuntu为例)

Linux系统安装Docker-根据官方教程教程(以Ubuntu为例) 1. 背景介绍2. 环境配置2.1 软件环境要求2.2 软件下载2.3 文档地址2.3 必备命令工具下载 3. 安装Docker3.1 使用root用户操作后续命令3.2 卸载可能存在的旧版本 4. 安装Docker4.1 更新依赖包4.2 配置…

电脑提示mfc100u.dll缺失如何解决?分享有效的5个解决方法

由于各种原因,电脑可能会出现一些问题,其中之一就是电脑提示mfc100u.dll的错误。这个问题可能会导致电脑无法正常运行某些程序或功能。为了解决这个问题,我将分享验证有效的五个修复方法,帮助大家恢复电脑的正常运行。 首先&#…

时间戳转换为日期格式(封装)

在前端开发中,后端有时候传过来的数据为时间戳的格式 而我们又需要将其转换为时间格式来回显。所以需要一个可以转换时间戳的工具。 封装函数 构建一个函数,传入我们的时间戳和我们想要的时间格式,通过JavaScript的时间对象方法,…

基于springboot,vue高校图书馆管理系统

开发工具:IDEA 服务器:Tomcat9.0, jdk1.8 项目构建:maven 数据库:mysql5.7 系统分前后台,项目采用前后端分离 前端技术:vueelementUI 服务端技术:springbootmybatisredis 本项…

【Unity入门】声音组件AudioSource简介及实现声音的近大远小

AudioSource组件 将需要播放声音的物体挂载Audio Listener组件,实现声音的播放 AudioSource组件属性 (1)AudioClip(音频剪辑):指定播放的音频文件。 (2)Output(音频输…