【算法专题】前缀和

前缀和

  • 前缀和
    • 1. 前缀和【模板】
    • 2. 二维前缀和【模板】
    • 3. 寻找数组的中心下标
    • 4. 除自身以外数组的乘积
    • 5. 和为K的子数组
    • 6. 和可被K整除的子数组
    • 7. 连续数组
    • 8. 矩阵区域和

前缀和

1. 前缀和【模板】

题目链接 -> Nowcoder -DP34.前缀和【模板】

Nowcoder -DP34.前缀和【模板】

题目:给定一个长度为n的数组 a1​, a2​, …an.
接下来有q次查询, 每次查询有两个参数l, r.
对于每个询问, 请输出 al + al + 1 + … + ar

输入描述:
第一行包含两个整数n和q.
第二行包含n个整数, 表示 a1, a2, …an.
接下来q行, 每行包含两个整数 l 和 r.
1 ≤ n, q ≤ 10^5
−10^9 ≤ a[i] ≤ 10^9
1 ≤ l ≤ r ≤n

输出描述:
输出q行, 每行代表一次查询的结果.

示例1
输入:
3 2
1 2 4
1 2
2 3

输出:
3
6​

思路:

  1. 先预处理出来⼀个「前缀和」数组:

用 dp[i] 表示: [1, i] 区间内所有元素的和,那么 dp[i - 1] 里面存的就是 [1, i - 1] 区间内所有元素的和,那么:可得递推公式: dp[i] = dp[i - 1] + arr[i] ;

  1. 使用前缀和数组,「快速」求出「某⼀个区间内」所有元素的和:

当询问的区间是 [l, r] 时:区间内所有元素的和为: dp[r] - dp[l - 1]

代码如下:

		#include <iostream>#include <vector>using namespace std;int main() {int n = 0, q = 0;cin >> n >> q;// 读取数据vector<long long> arr(n + 1);for(int i = 1; i <= n; i++) cin >> arr[i];// 处理前缀和数组vector<long long> dp(n + 1);for(int i = 1; i <= n; i++)dp[i] = dp[i - 1] + arr[i];// 计算区间和while(q--){int l = 0, r = 0;cin >> l >> r;cout << dp[r] - dp[l - 1] << endl;}return 0;}

2. 二维前缀和【模板】

题目链接 -> Nowcoder -DP35.二维前缀和【模板】

Nowcoder -DP35.二维前缀和【模板】

题目:给你一个 n 行 m 列的矩阵 A ,下标从1开始。
接下来有 q 次查询,每次查询输入 4 个参数 x1, y1, x2, y2
请输出以(x1, y1) 为左上角, (x2, y2) 为右下角的子矩阵的和,

输入描述:
第一行包含三个整数n, m, q.
接下来n行,每行m个整数,代表矩阵的元素
接下来q行,每行4个整数x1, y1, x2, y2,分别代表这次查询的参数

1 <= n,m <= 1000
1 <= q <= 10^5
-10^9 <= a[i][j] <= 10^9
1 <= x1 <= x2 <= n
1 <= y1 <= y2 <= m

输出描述:
输出q行,每行表示查询结果。

思路:前缀和;
1、首先搞出来前缀和矩阵,这里就要用到一维数组里面的拓展知识,我们要在矩阵的最上面和最左边添加上一行和一列 0,这样我们就可以省去非常多的边界条件的处理;处理后的矩阵就像这样:

在这里插入图片描述

这样,我们填写前缀和矩阵数组的时候,下标直接从 1 开始,能大胆使用 i - 1 , j - 1 位置的值。
注意 dp 表与原数组 matrix 内的元素的映射关系:

  • 从 dp 表到 matrix 矩阵,横纵坐标减一;
  • 从 matrix 矩阵到 dp 表,横纵坐标加一

前缀和矩阵中 dp[i][j] 的含义,以及如何递推二维前缀和方程

  1. dp[i][j] 的含义:
    dp[i][j] 表示,从 [0, 0] 位置到 [i, j] 位置这段区域内,所有元素的累加和。对应下图的红色区域

在这里插入图片描述

  1. 递推方程

我们可以将 [0, 0] 位置到 [i, j] 位置这段区域分解成下面的部分:

在这里插入图片描述

dp[i][j] = 红 + 蓝 + 绿 + 紫,分析一下这四块区域:

  • 紫色部分最简单,它就是原数组矩阵中的 matrix[i - 1][j - 1] (注意坐标的映射关系)
  • 单独的蓝不好求,因为它不是我们定义的状态表示中的区域,同理,单独的绿也是;
  • 但是如果是红 + 蓝,正好是我们 dp 数组矩阵中 dp[i - 1][j] 的值
  • 同理,如果是红 + 绿,正好是我们 dp 数组矩阵中 dp[i][j - 1] 的值
  • 如果把上面求的三个值加起来,那就是紫 + 红 + 蓝 + 红 + 绿,发现多算了一部分红的面积,因此再单独减去红的面积即可;
  • 红的面积正好也是符合 dp 数组的定义的,即 dp[i - 1][j - 1]

综上所述,我们的 dp 矩阵递推方程就是:
dp[i][j]=dp[i - 1][j] + dp[i][j - 1] - dp[i - 1][j - 1]+matrix[i - 1][j - 1]

2、使用 dp 前缀和矩阵

我们可以继续使用下面这个图,题中求的是 [x1, y1] 到 [x2, y2] 的面积:

在这里插入图片描述

也可以画出具体的图理解,如下图所示:

在这里插入图片描述

接下来分析如何使用这个前缀和矩阵,假设上图中这里的 x 和 y 都处理过了,对应的正是 dp 矩阵中的下标;

因此我们要求的就是紫色部分的面积,继续分析几个区域:

  • 红色,能直接求出来,就是 dp[x1 - 1][y1 - 1] (为什么减一?因为要剔除掉 x1 这一行和 y1 这一列,这一行和这一列是要求出来的结果的一部分)
  • 蓝色,直接求不好求,但是和红色拼起来,正好是 dp 表内 dp[x1 - 1][y2] 的数据
  • 同理,绿色不好求,但是 红 + 绿 = dp[x2][y1 - 1] ;
  • 再看看整个面积,非常好求,正好是 dp[x2][y2] ;
  • 那么,紫色 = 整个面积 - 红 - 蓝 - 绿,但是蓝绿不好求,我们可以这样减:整个面积 -(蓝 + 红)-(绿 + 红),这样相当于多减去了一个红,再加上即可

综上所述:紫 = 整个面积 -(蓝 + 红)- (绿 + 红)+ 红,从而可得紫色区域内的元素总和为:dp[x2][y2] - dp[x2][y1 - 1] - dp[x1 - 1][y2] + dp[x1 - 1][y1 - 1]

思路介绍完毕,代码如下:

		#include <iostream>#include <vector>using namespace std;int main() {int n = 0, m = 0, q = 0; cin >> n >> m >> q;// 输入矩阵vector<vector<long long>> arr(n + 1, vector<long long>(m + 1));for(int i = 1; i <= n; i++)for(int j = 1; j <= m; j++)cin >> arr[i][j];// 预处理,创建一个 dp 矩阵vector<vector<long long>> dp(n + 1, vector<long long>(m + 1));for(int i = 1; i <= n; i++)for(int j = 1; j <= m; j++)dp[i][j] = dp[i - 1][j] + dp[i][j - 1] - dp[i - 1][j - 1] + arr[i][j];// 使用矩阵查询while(q--){int x1, y1, x2, y2;cin >> x1 >> y1 >> x2 >> y2;cout << (dp[x2][y2] - dp[x1 - 1][y2] - dp[x2][y1 - 1] + dp[x1 - 1][y1 - 1]) << endl;}return 0;}

3. 寻找数组的中心下标

题目链接 -> Leetcode -724.寻找数组的中心下标

Leetcode -724.寻找数组的中心下标

题目:给你一个整数数组 nums ,请计算数组的 中心下标 。
数组 中心下标 是数组的一个下标,其左侧所有元素相加的和等于右侧所有元素相加的和。
如果中心下标位于数组最左端,那么左侧数之和视为 0 ,因为在下标的左侧不存在元素。这一点对于中心下标位于数组最右端同样适用。
如果数组有多个中心下标,应该返回 最靠近左边 的那一个。如果数组不存在中心下标,返回 - 1 。

示例 1:
输入:nums = [1, 7, 3, 6, 5, 6]
输出:3
解释:
中心下标是 3 。
左侧数之和 sum = nums[0] + nums[1] + nums[2] = 1 + 7 + 3 = 11 ,
右侧数之和 sum = nums[4] + nums[5] = 5 + 6 = 11 ,二者相等。

示例 2:
输入:nums = [1, 2, 3]
输出: - 1
解释:
数组中不存在满足此条件的中心下标。

示例 3:
输入:nums = [2, 1, -1]
输出:0
解释:
中心下标是 0 。
左侧数之和 sum = 0 ,(下标 0 左侧不存在元素),
右侧数之和 sum = nums[1] + nums[2] = 1 + -1 = 0 。

提示:

  • 1 <= nums.length <= 10^4
  • 1000 <= nums[i] <= 1000

思路:从中心下标的定义可知,除中心下标的元素外,该元素左边的「前缀和」等于该元素右边的「后缀和」。

  • 因此,我们可以先预处理出来两个数组,⼀个表示前缀和,另一个表示后缀和。
  • 然后,我们可以用一个 for 循环枚举可能的中心下标,判断每一个位置的「前缀和」以及「后缀和」,如果二者相等,就返回当前下标。

代码如下:

		class Solution {public:// 前缀和思想int pivotIndex(vector<int>& nums) {int n = nums.size();vector<int> dp(n + 1);// 先填表for(int i = 1; i <= n; i++)dp[i] = dp[i - 1] + nums[i - 1];// 使用 dp 表for(int i = 1; i <= n; i++)if(dp[i - 1] == dp[n] - dp[i]) return i - 1;return -1;}};

4. 除自身以外数组的乘积

题目链接 -> Leetcode -238.除自身以外数组的乘积

Leetcode -238.除自身以外数组的乘积

题目:给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。
题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。
请 不要使用除法,且在 O(n) 时间复杂度内完成此题。

示例 1:
输入: nums = [1, 2, 3, 4]
输出 : [24, 12, 8, 6]

示例 2 :
输入 : nums = [-1, 1, 0, -3, 3]
输出 : [0, 0, 9, 0, 0]

提示:

  • 2 <= nums.length <= 10^5
  • 30 <= nums[i] <= 30

保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。

思路:根据题意,对于每⼀个位置的最终结果 ret[i] ,它是由两部分组成的:

  • nums[0] * nums[1] * nums[2] * … * nums[i - 1]
  • nums[i + 1] * nums[i + 2] * … * nums[n - 1]

于是,我们可以利用前缀和的思想,使用两个数组 f 和 g,分别处理出来两个信息:

  • f[i] 表示:i 位置之前的所有元素,即 [0, i - 1] 区间内所有元素的前缀乘积
  • g[i] 表示:i 位置之后的所有元素,即 [i + 1, n - 1] 区间内所有元素的后缀乘积

然后再处理最终结果

代码如下:

		class Solution {public:vector<int> productExceptSelf(vector<int>& nums) {int n = nums.size();vector<int> f(n, 1), g(n, 1), dp(n);// f[i] 表示:i 位置之前的所有元素,即 [0, i - 1] 区间内所有元素的前缀乘积; // g[i] 表示:i 位置之后的所有元素,即 [i + 1, n - 1] 区间内所有元素的后缀乘积for(int i = 1; i < n; i++) f[i] = f[i - 1] * nums[i - 1];for(int i = n - 2; i >= 0; i--) g[i] = g[i + 1] * nums[i + 1];for(int i = 0; i < n; i++) dp[i] = f[i] * g[i];return dp;}};

5. 和为K的子数组

题目链接 -> Leetcode -560.和为K的子数组

Leetcode -560.和为K的子数组

题目:给你一个整数数组 nums 和一个整数 k ,请你统计并返回 该数组中和为 k 的连续子数组的个数 。
子数组是数组中元素的连续非空序列。

示例 1:
输入:nums = [1, 1, 1], k = 2
输出:2

示例 2:
输入:nums = [1, 2, 3], k = 3
输出:2

提示:

  • 1 <= nums.length <= 2 * 10^4
  • 1000 <= nums[i] <= 1000
  • 10^7 <= k <= 10^7

思路:设 i 为数组中的任意位置,用 sum[i] 表示 [0, i] 区间内所有元素的和;想知道有多少个「以 i 为结尾的和为 k 的子数组」,就要找到有多少个起始位置为 x1, x2, x3… 使得 [x, i] 区间内的所有元素的和为 k ;那么 [0, x] 区间内的和就是sum[i] - k 了。于是问题就变成:

  • 找到在 [0, i - 1] 区间内,有多少前缀和等于 sum[i] - k 的即可

在这里插入图片描述

代码如下:

		class Solution {public:int subarraySum(vector<int>& nums, int k) {int n = nums.size();vector<int> dp(n + 1);unordered_map<int, int> hash;// 当整个前缀和等于 k 时,相当于找和为 0 的个数,所以默认和为 0 的有一个hash[0] = 1;int sum = 0, ret = 0;for(int i = 1; i <= n; i++){// 计算当前位置的前缀和dp[i] = dp[i - 1] + nums[i - 1];// 在 [0, i - 1] 区间内,有多少前缀和等于 dp[i] - kif(hash.count(dp[i] - k)) ret += hash[dp[i] - k];hash[dp[i]]++;}return ret;}};

6. 和可被K整除的子数组

题目链接 -> Leetcode -974.和可被K整除的子数组

Leetcode -974.和可被K整除的子数组

题目:给定一个整数数组 nums 和一个整数 k ,返回其中元素之和可被 k 整除的(连续、非空) 子数组 的数目。

子数组 是数组的 连续 部分。

示例 1:
输入:nums = [4, 5, 0, -2, -3, 1], k = 5
输出:7
解释:
有 7 个子数组满足其元素之和可被 k = 5 整除:
[4, 5, 0, -2, -3, 1], [5], [5, 0], [5, 0, -2, -3], [0], [0, -2, -3], [-2, -3]

示例 2:
输入: nums = [5], k = 9
输出 : 0

提示 :

  • 1 <= nums.length <= 3 * 10^4
  • 10^4 <= nums[i] <= 10^4
  • 2 <= k <= 10^4

思路:

  • 同余定理:如果(a - b)% p = 0,那么 a % p = b % p;设 [0, x - 1] 区间内所有元素之和等于 a , [0, i] 区间内所有元素的和等于 b ,可得(b - a) % k == 0;

由同余定理可得, [0, x - 1] 区间与 [0, i] 区间内的前缀和同余。于是问题就变成:找到在 [0, i - 1] 区间内,有多少前缀和的余数等于 dp[i] % k 的即可。

代码如下:

		class Solution {public:int subarraysDivByK(vector<int>& nums, int k){int n = nums.size();vector<int> dp(n + 1);unordered_map<int, int> hash;hash[0] = 1; // 0 这个数的余数int ret = 0;for (int i = 1; i <= n; i++){// 当前位置的前缀和dp[i] = dp[i - 1] + nums[i - 1];// 因为 c++ 中负数对正数取余得到的是负数,所以要进行修正,修正后的结果:int tp = (dp[i] % k + k) % k; // 相当于是 dp[i] % k// 统计结果// 如果这个余数在前面出现过,现在加上 nums[i - 1] 后,还是等于这个余数,说明这个数可以被 k 整数if (hash.count(tp)) ret += hash[tp];hash[tp]++;}return ret;}};

7. 连续数组

题目链接 -> Leetcode -525.连续数组

Leetcode -525.连续数组

题目:给定一个二进制数组 nums, 找到含有相同数量的 0 和 1 的最长连续子数组,并返回该子数组的长度。

示例 1:
输入: nums = [0, 1]
输出 : 2
说明 : [0, 1] 是具有相同数量 0 和 1 的最长连续子数组。

示例 2 :
输入 : nums = [0, 1, 0]
输出 : 2
说明 : [0, 1] (或[1, 0]) 是具有相同数量0和1的最长连续子数组。

提示:

  • 1 <= nums.length <= 10^5
  • nums[i] 不是 0 就是 1

思路:设 i 为数组中的任意位置,用 sum[i] 表示 [0, i] 区间内所有元素的和。如果将 0 记为 -1 , 1 记为 1 ,问题就变成了找出一段区间,这段区间的和等于 0.

  • 想知道最大的「以 i 为结尾的和为 0 的⼦数组」,就要找到从左往右第⼀个 x1 使得 [x1, i] 区间内的所有元素的和为 0 。

  • 那么 [0, x1 - 1] 区间内的和就是 sum[i] 了。于是问题就变成:
    找到在 [0, i - 1] 区间内,第⼀次出现 sum[i] 的位置即可;

  • 我们可以用一个哈希表,⼀边求当前位置的前缀和,一边记录第一次出现该前缀和的位置。

代码如下:

		class Solution {public:int findMaxLength(vector<int>& nums) {int n = nums.size();unordered_map<int, int> hash;// 默认有一个前缀和为 0 的情况hash[0] = -1; int retlen = 0, sum = 0;for(int i = 0; i < n; i++){// 计算当前位置的前缀和sum += nums[i] == 0? -1 : 1;if(hash.count(sum)) retlen = max(i - hash[sum], retlen);// 存下标else hash[sum] = i;}return retlen;}};

8. 矩阵区域和

题目链接 -> Leetcode -1314.矩阵区域和

Leetcode -1314.矩阵区域和

题目:给你一个 m x n 的矩阵 mat 和一个整数 k ,请你返回一个矩阵 answer ,其中每个 answer[i][j] 是所有满足下述条件的元素 mat[r][c] 的和:

i - k <= r <= i + k,
j - k <= c <= j + k 且
(r, c) 在矩阵内。

示例 1:
输入:mat = [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k = 1
输出: [[12, 21, 16], [27, 45, 33], [24, 39, 28]]

示例 2:
输入:mat = [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k = 2
输出: [[45, 45, 45], [45, 45, 45], [45, 45, 45]]

提示:

  • m == mat.length
  • n == mat[i].length
  • 1 <= m, n, k <= 100
  • 1 <= mat[i][j] <= 100

思路:二维前缀和的简单应用题,画图写出公式即可;

代码如下:

		class Solution {public:vector<vector<int>> matrixBlockSum(vector<vector<int>>& mat, int k) {int m = mat.size(), n = mat[0].size();vector<vector<int>> dp(m + 1, vector<int>(n + 1));vector<vector<int>> ret(m, vector<int>(n));for(int i = 1; i <= m; i++)for(int j = 1; j <= n; j++)dp[i][j] = dp[i - 1][j] + dp[i][j - 1] - dp[i - 1][j - 1] + mat[i - 1][j - 1];for(int i = 0; i < m; i++){for(int j = 0; j < n; j++){int x1 = max(0, i - k) + 1, y1 = max(0, j - k) + 1;int x2 = min(m - 1, i + k) + 1, y2 = min(n - 1, j + k) + 1;ret[i][j] = dp[x2][y2] - dp[x1 - 1][y2] - dp[x2][y1 - 1] + dp[x1 - 1][y1 - 1];}}return ret;       }};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/210215.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

15、pytest的fixture调用fixture

官方实例 # content of test_append.py import pytest# Arrange pytest.fixture def first_entry():return "a"# Arrange pytest.fixture def order(first_entry):return [first_entry]def test_string(order):# Actorder.append("b")# Assertassert orde…

failed to install plugin grafana 插件安装失败

升级时忽略plugins 权限问题&#xff0c;导致安装插件失败&#xff01;调整权限即可

论文解读--PointPillars- Fast Encoders for Object Detection from Point Clouds

PointPillars--点云目标检测的快速编码器 摘要 点云中的物体检测是许多机器人应用(如自动驾驶)的重要方面。在本文中&#xff0c;我们考虑将点云编码为适合下游检测流程的格式的问题。最近的文献提出了两种编码器;固定编码器往往很快&#xff0c;但牺牲了准确性&#xff0c;而…

【报名】2023产业区块链生态日暨 FISCO BCOS 开源六周年生态大会

作为2023深圳国际金融科技节系列活动之一&#xff0c;由深圳市地方金融监督管理局指导&#xff0c;微众银行、金链盟主办的“2023产业区块链生态日暨FISCO BCOS开源六周年生态大会”将于12月15日下午14:00在深圳举办。 今年的盛会将进一步升级&#xff0c;以“FISCO BCOS和TA的…

C# - Opencv应用(3) 之矩阵Mat使用[图像截取粘贴、ROI操作、位运算、数学计算]

C# - Opencv应用&#xff08;3&#xff09; 之矩阵Mat使用[图像截取粘贴、ROI操作、位运算、数学计算] 图像读取&#xff0c;大小、截取、位运算图像ROI操作&#xff1a;粘贴赋值、滤波图像数学计算部分结果如下&#xff1a; 1.图像读取&#xff0c;大小、截取、位运算 //图…

nodejs微信小程序+python+PHP天天网站书城管理系统的设计与实现-计算机毕业设计推荐

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性&#xff1a;…

vs 安装 qt qt扩展 改迅雷下载qt

Qt5.14.2安装教程和VS2019中的qt环境配置-CSDN博客 1 安装qt 社区版 免费 Download Qt OSS: Get Qt Online Installer 2 vs安装 qt vs tools 3 vs添加 qt添加 bin/cmake.exe 路径 3.1 扩展 -> qt versions 3.2 4 新版要源码安装 需要自己安装 安装独立安装的旧版 官网…

【AUTOSAR】【通信栈】IPduM

AUTOSAR专栏——总目录_嵌入式知行合一的博客-CSDN博客文章浏览阅读310次。本文主要汇总该专栏文章,以方便各位读者阅读。https://xianfan.blog.csdn.net/article/details/132072415 目录 一、概述 二、相关模块 2.1 OS

Python-docx 深入word源码 自定义页码页脚以动态显示总页数和当前页数

代码和效果图 先上能够正常显示页码页脚的Python代码和效果图&#xff0c;之后再解释原理和思路 from docx import Document from docx.shared import Pt from docx.oxml import OxmlElement from docx.enum.text import WD_PARAGRAPH_ALIGNMENT from docx.oxml.ns import qn…

06 数仓平台MaxWell

Maxwell简介 Maxwell是由Zendesk公司开源&#xff0c;用 Java 编写的MySQL变更数据抓取软件&#xff0c;能实时监控 MySQL数据库的CRUD操作将变更数据以 json 格式发送给 Kafka等平台。 Maxwell输出数据格式 Maxwell 原理 Maxwell工作原理是实时读取MySQL数据库的二进制日志…

.NET Core6.0 MVC+layui+SqlSugar 简单增删改查

HTML部分: {ViewData["Title"] "用户列表"; } <!DOCTYPE html> <html> <head><meta charset"utf-8"><title>用户列表</title><meta name"renderer" content"webkit"><meta …

网络安全(二)-- Linux 基本安全防护技术

4.1. 概述 安全防护基础主要是会用Linux系统&#xff0c; 熟悉Linux基本操作命令。 在这个章节中&#xff0c;我们主要探讨自主访问控制&#xff08;许可位、ACL&#xff09;、文件属性、 PAM技术、能力机制等。 4.1.1. 补充命令 本章节中&#xff0c;涉及一些新的命令&#…

洛谷P1044 [NOIP2003 普及组] 栈 递归方法

目录 核心&#xff1a; 问题转化&#xff1a; 状态转化&#xff1a;&#xff08;你得先读懂题&#xff0c;理解我们要干什么&#xff09; 对应不同情况下的状态转化&#xff1a;&#xff08;比如栈空就不能出栈&#xff0c;&#xff0c;&#xff09; AC代码&#xff1a; 题…

GAN:ImprovedGAN-训练GAN的改进策略

论文&#xff1a;https://arxiv.org/abs/1606.03498 代码&#xff1a;https://github.com/openai/improved_gan 发表&#xff1a;NIPS 2016 一、文章创新 1&#xff1a;Feature matching&#xff1a;特征匹配通过为生成器指定新目标来解决GANs的不稳定性&#xff0c;从而防止…

css实现正六边形嵌套圆心

要实现一个正六边形嵌套圆心&#xff0c;可以使用CSS的::before和::after伪元素以及border-radius属性。以下是具体的解析和代码&#xff1a; 使用::before和::after伪元素创建正六边形。设置正六边形的背景色。使用border-radius属性使正六边形的内角为60度。在正六边形内部创…

Qt 软件调试——windbg初篇(一)

在上一篇《Qt 软件调试&#xff08;二&#xff09;使用dump捕获崩溃信息》中我们结尾处提示大家先准备好windbg&#xff0c;windbg是非常强大的调试工具&#xff0c;对于我们进行代码调试和分析异常有着非常重要的意义。 在Qt软件调试这个系列的首篇&#xff0c;我们介绍了《Qt…

前端传参中带有特殊符号导致后端接收时乱码或转码失败的解决方案

文章目录 bug背景解决思路1&#xff1a;解决思路2解决思路3&#xff08;最终解决方案&#xff09;后记 bug背景 项目中采用富文本编辑器后传参引起的bug&#xff0c;起因如下&#xff1a; 数据库中存入的数据会变成这种未经转码的URL编码 解决思路1&#xff1a; 使用JSON方…

7nm项目之顶层规划——01数据导入

1.创建workspace 创建workspace后&#xff0c;在其目录下产生。 CORTEXA53.json文件是将有默认配置的文件master.json、有library的.config.json文件、tunes下CORTEXA53.tunes.json文件合并 注&#xff1a;tunes下的CORTEXA53.tunes.json文件可以覆盖一些master.json的设置…

深入微服务架构 | 微服务与k8s架构解读

微服务项目架构解读 ① 什么是微服务&#xff1f; 微服务是指开发一个单个小型的但有业务功能的服务&#xff0c;每个服务都有自己的处理和轻量通讯机制&#xff0c;可以部署在单个或多个服务器上。 微服务也指一种种松耦合的、有一定的有界上下文的面向服务架构。也就是说&…

华为手环关闭智能适时测量

问题 使用华为手环并使用华为创新研究APP后&#xff0c;会自动打开智能适时测量开关&#xff0c;此开关开启后&#xff0c;手环会在睡眠时间自动测量血氧&#xff0c;增加手环功耗从而影响续航&#xff0c;用户可根据自身需求决定是否开启&#xff0c;下文介绍如何找到此开关。…