深度学习火车票识别系统 计算机竞赛

文章目录

  • 0 前言
  • 1 课题意义
    • 课题难点:
  • 2 实现方法
    • 2.1 图像预处理
    • 2.2 字符分割
    • 2.3 字符识别
      • 部分实现代码
  • 3 实现效果
  • 4 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 图像识别 火车票识别系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题意义

在这里插入图片描述

目前火车乘务员在卧铺旅客在上车前为其提供将火车票换成位置信息卡服务,在旅客上车前,由于上车人数多,而且大多数旅客都携带大量行李物品,而且乘车中老人和小孩也较多。在换卡这一过程中,人员拥挤十分厉害,而且上火车时,火车门窄阶梯也较陡,危险系数十分高。乘务员维持秩序十分困难。换卡之后,在旅客下车之前乘务员又要将位置信息卡换成火车票。这一过程冗长且对于旅客基本没有任何有用的意义。如果通过光学符识别软件,乘务员利用ipad等电子产品扫描采集火车票图像,读取文本图像,通过识别算法转成文字,将文字信息提取出来,之后存储起来,便于乘务员统计查看,在旅客到站是,系统自动提醒乘务员某站点下车的所有旅客位置信息。随着铁路交通的不断优化,车次与旅客人数的增加,火车票免票系统将更加便捷,为人们带来更好的服务。

课题难点:

由于火车票票面文字识别属于多种字体混排,低品质的专用印刷汉子识别。火车票文字笔画粘连,断裂,识别复杂度高,难度大,采用目前较好的OCR技术都比较难以实现。

2 实现方法

2.1 图像预处理

火车票经过扫描装置火车照相机等装置将图像传递到计算机,经过灰度处理保存为一幅灰度图。如果要对火车票进行后期的识别,那么就一定要对图像做二值化,之后再对二值化的图像进行版面分析,确定我们所需要的信息所在,之后才能进行单个字符的分割,才能对字符做提取特征点的工作,之后按照我们对比确定的规则来进行判决从而达到识别效果。

由于火车票容易被污损、弯折,而且字符的颜色也是有所不同,火车票票号是红色,而其他信息显示则为黑色,票面的背景包括红色和蓝色两种彩色,这些特点都使得火车票的文字识别不同于一般的文字识别。在识前期,要对火车票图像做出特定的处理才能很好的进行后续的识别。本次课题所研究的预处理有平常所处理的二值化,平滑去噪之外还需要针对不同字符颜色来进行彩色空间上的平滑过滤。

预处理流程如下所示

在这里插入图片描述

2.2 字符分割

字符分割就是在版面分析后得到的文本块切分成为文字行,之后再将行分割成单个字符,来进行后续的字符识别。这是OCR系统里至关重要的一环,直接影响识别效果。字符分割的主流方式有三种,一种是居于图像特种来寻找分割的准则,这是从结构角度进行分析切割。另一种方式是根据识别效果反馈来确认分割结果有无问题,这种方式是基于识别的切分。还有一种整体切分方式,把字符串当做整体,系统进行以词为基础的识别比并非字识别,一般这一方式要根据先验知识来进行辅助判断。

分割效果如下图所示:
在这里插入图片描述
在这里插入图片描述

2.3 字符识别

中文/数字/英文 识别目前最高效的方法就是使用深度学习算法进行识别。

字符识别对于深度学习开发者来说是老生常谈了,这里就不在复述了;

网络可以视为编解码器结构,编码器由特征提取网络ResneXt-50和双向长短时记忆网络(BiLSTM)构成,解码器由加入注意力机制的长短时记忆网络(LSTM)构成。网络结构如下图所示。

在这里插入图片描述

网络训练流程如下:
在这里插入图片描述

部分实现代码

这里学长提供一个简单网络字符识别的训练代码:
(需要完整工程及代码的同学联系学长获取)

import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
#1、开始建立一个图
sess = tf.InteractiveSession()#启动一个交互会话
x = tf.placeholder(tf.float32, shape=[None, 784])#x和y_都用一个占位符表示
y_ = tf.placeholder(tf.float32, shape=[None, 10])W = tf.Variable(tf.zeros([784, 10]))#W和b因为需要改变,所以定义为初始化为0的变量
b = tf.Variable(tf.zeros(10))#2、建立预测部分的操作节点
y = tf.matmul(x,W) + b  #计算wx+b
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)) #计算softmax交叉熵的均值#3、现在已经得到了损失函数,接下来要做的就是最小化这一损失函数,这里用最常用的梯度下降做
# 为了用到前几节说过的内容,这里用学习率随训练下降的方法执行
global_step = tf.Variable(0, trainable = False)#建立一个可变数,而且这个变量在计算梯度时候不被影响,其实就是个全局变量
start_learning_rate = 0.5#这么写是为了清楚
#得到所需的学习率,学习率每100个step进行一次变化,公式为decayed_learning_rate = learning_rate * decay_rate ^(global_step / decay_steps)
learning_rate = tf.train.exponential_decay(start_learning_rate, global_step, 10, 0.9, staircase=True)train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy)#梯度下降最小化交叉熵
#这是因为在交互的Session下可以这样写Op.run(),还可以sess.run(tf.global_variables_initializer())
tf.global_variables_initializer().run()#初始化所有变量#iteration = 1000, Batch_Size = 100 
for _ in range(1000):batch = mnist.train.next_batch(100)#每次选出100个数据train_step.run(feed_dict = {x:batch[0], y_: batch[1]})#给Placeholder填充数据就可以了correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) #首先比较两个结果的差异
#这时的correct_prediction应该类似[True, False, True, True],然后只要转为float的形式再求加和平均就知道准确率了
#这里的cast是用于形式转化
accuracy = tf.reduce_mean(tf.cast(correct_prediction, dtype=tf.float32))
#打印出来就可以了,注意这个时候accuracy也只是一个tensor,而且也只是一个模型的代表,还需要输入数据
print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}))sess.close()#首先把要重复用的定义好
def weight_variable(shape):initial = tf.truncated_normal(shape=shape, stddev=0.1)return tf.Variable(initial)
def bias_variable(shape):initial = tf.constant(0.1, shape=shape)#常量转变量,return tf.Variable(initial)
def conv2d(x, f):return tf.nn.conv2d(x, f, strides=[1,1,1,1], padding='SAME')
def max_pool_22(x):return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')sess = tf.InteractiveSession()#启动一个交互会话
x = tf.placeholder(tf.float32, shape=[None, 784])#x和y_都用一个占位符表示
y_ = tf.placeholder(tf.float32, shape=[None, 10])
x_image = tf.reshape(x, [-1, 28, 28, 1])
#第一层:
#1、设计卷积核1
fW1 = weight_variable([5,5,1,32])#[height, weight, in_channel, out_channel]
fb1 = bias_variable([32])#2、卷积加池化
h1 = tf.nn.relu(conv2d(x_image,fW1)+ fb1)
h1_pool = max_pool_22(h1)#第二层
fW2 = weight_variable([5,5,32,64])#[height, weight, in_channel, out_channel]
fb2 = bias_variable([64])h2 = tf.nn.relu(conv2d(h1_pool,fW2)+ fb2)
h2_pool = max_pool_22(h2)#全部变成一维全连接层,这里因为是按照官方走的,所以手动计算了经过第二层后的图片尺寸为7*7
#来定义了一个wx+b所需的w和b的尺寸,注意这里的W和b不是卷积所用的了
h2_pool_flat = tf.reshape(h2_pool, [-1, 7*7*64])#首先把数据变成行表示
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_fc1 = tf.nn.relu(tf.matmul(h2_pool_flat, W_fc1) + b_fc1)#定义dropout,选择性失活,首先指定一个失活的比例
prob = tf.placeholder(tf.float32)
h_dropout = tf.nn.dropout(h_fc1, prob)#最后一个全连接层,输出10个值,用于softmax
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_dropout, W_fc2) + b_fc2#梯度更新,这里采用另一种优化方式AdamOptimizer
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))#初始化
sess.run(tf.global_variables_initializer())
for i in range(2000):batch = mnist.train.next_batch(50)if i%100 == 0:train_accuracy = accuracy.eval(feed_dict = {x:batch[0],y_:batch[1], prob:1.0}) #这里是计算accuracy用的eval,不是在run一个Operationprint("step %d, training accuracy %g"%(i, train_accuracy))train_step.run(feed_dict={x: batch[0], y_: batch[1], prob: 0.5})
print("test accuracy %g"%accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, prob: 1.0}) )

3 实现效果

车票图
在这里插入图片描述
识别效果:
在这里插入图片描述

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/211172.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【人工智能Ⅰ】实验7:K-means聚类实验

实验7 K-means聚类实验 一、实验目的 学习K-means算法基本原理,实现Iris数据聚类。 二、实验内容 应用K-means算法对iris数据集进行聚类。 三、实验结果及分析 0:输出数据集的基本信息 参考代码在main函数中首先打印了数据、特征名字、目标值、目标…

【STM32】TIM定时器基本定时功能

第一部分:定时器基本定时的功能; 第二部分:定时器的输出比较功能; 第三部分:定时器输入捕获的功能; 第四部分:定时器的编码接口。 1 TIM简介 TIM(Timer)定时器&#…

实验报告-实验四(时序系统实验)

软件模拟电路图 说明 SW:开关,共六个Q1~Q3:输出Y0~Y3:输出 74LS194 首先,要给S1和S0高电位,将A~D的数据存入寄存器中(如果开始没有存入数据,那么就是0000在里面移位,不…

“新KG”视点 | 知识与大模型融合技术在电信领域应用探索

OpenKG 大模型专辑 导读 知识图谱和大型语言模型都是用来表示和处理知识的手段。大模型补足了理解语言的能力,知识图谱则丰富了表示知识的方式,两者的深度结合必将为人工智能提供更为全面、可靠、可控的知识处理方法。在这一背景下,OpenKG组织…

SI24R03 高度集成低功耗SOC 2.4G 收发一体芯片

今天给大家介绍一款Soc 2.4G 收发一体模块-SI24R03 Si24R03是一款高度集成的低功耗无线SOC芯片,芯片为QFN32 5x5mm封装,集成了资源丰富的MCU内核与2.4G收发器模块,最低功耗可达1.6uA,极少外围器件,大幅降低系统应用成本…

DNS协议(DNS规范、DNS报文、DNS智能选路)

目录 DNS协议基本概念 DNS相关规范 DNS服务器的记录 DNS报文 DNS域名查询的两种方式 DNS工作过程 DNS智能选路 DNS协议基本概念 DNS的背景 我们知道主机通信需要依靠IP地址,但是每次通过输入对方的IP地址和对端通信不够方便,IP地址不好记忆 因此提…

【Spring Boot】如何在IntelliJ IDEA中由同一份spring boot源码运行多个不同端口的实例

我们需要使用一个服务有多个实例的测试场景,那么我们就需要在IntelliJ IDEA中通过不同的端口运行不同的实例,并且运行时的源代码是一样的,那么我们可以在IntelliJ IDEA这样操作,接下来以UserApplication服务为例: 复制…

华为OD机试 - 九宫格按键输入 - 逻辑分析(Java 2023 B卷 200分)

目录 专栏导读一、题目描述二、输入描述三、输出描述四、解题思路五、Java算法源码六、效果展示1、输入2、输出3、说明 华为OD机试 2023B卷题库疯狂收录中,刷题点这里 专栏导读 本专栏收录于《华为OD机试(JAVA)真题(A卷B卷&#…

Linux系统之部署Plik临时文件上传系统

Linux系统之部署Plik临时文件上传系统 一、Plik介绍1.1 Plik简介1.2 Plik特点 二、本地环境介绍2.1 本地环境规划2.2 本次实践介绍 三、检查本地环境3.1 检查本地操作系统版本3.2 检查系统内核版本 四、下载Plik软件包4.1 创建下载目录4.2 下载Plik软件包4.3 查看下载的Plik软件…

Python sorted函数及用法以及如何用json模块存储数据

Python sorted函数及用法 sorted() 函数与 reversed() 函数类似,该函数接收一个可迭代对象作为参数,返回一个对元素排序的列表。 在交互式解释器中测试该函数,可以看到如下运行过程: >>> a [20, 30, -1.2, 3.5, 90, 3.…

【已解决】Win10端口被占用

​ 我总是在启动项目的时候失败,被告知端口号被占用,明明没有被占用(可能是系统卡了或者其它问题),但是又不想改端口号,或者重启电脑,那怎么办呢? 第一步:打开命令行窗口,以管理员…

植物单细胞基础工程之标记基因数据库

前 言 单细胞转录组这把火已经爆燃到了植物领域。 单次实验即可获得上万个细胞的基因表达数据(大老远都觉得香),直接把分辨率从组织水平干到了单个细胞水平(当然,最后说事大多数还是基于细胞cluster或者sub cluster&…

vr工业制造流程3D模拟仿真可视化展示

工业仿真3D数字化展示系统具有多方面的独特之处,主要体现在以下几个方面: 1、真实感和交互性:该系统可以将实际的工业设备、产品、场景等进行数字化建模,通过三维图形技术将其呈现在计算机屏幕上,使用户可以在虚拟环境…

Matlab 加权均值质心计算(WMN)

文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 思路很简单,即将之前的均值中心,引入相关的权重函数(通常与距离有关),以此为每个点进行赋权,最后即可得到一个加权均值中心: 二、实现代码 %% ********<

vue+elementUI的tabs与table表格联动固定与滚动位置

有个变态的需求&#xff0c;要求tabs左侧固定&#xff0c;右侧是表格&#xff0c;点击左侧tab&#xff0c;右侧表格滚动到指定位置&#xff0c;同时&#xff0c;右侧滚动的时候&#xff0c;左侧tab高亮相应的item 上图 右侧的高度非常高&#xff0c;内容非常多 常规的瞄点不适…

stm32项目(11)——基于stm32的俄罗斯方块游戏机

1.功能设计 使用stm32f103zet6平台&#xff0c;以及一块LCD屏幕&#xff0c;实现了一个俄罗斯方块游戏机。可以用按键调整方块的位置、还可以控制方块下降的速度&#xff01; 2.视频演示 俄罗斯方块 3.俄罗斯方块发展史 俄罗斯方块是一种经典的拼图游戏&#xff0c;由苏联俄罗…

SpringBoot_02

Web后端开发_07 SpringBoot_02 SpringBoot原理 1.配置优先级 1.1配置 SpringBoot中支持三种格式的配置文件&#xff1a; application.propertiesapplication.ymlapplication.yaml properties、yaml、yml三种配置文件&#xff0c;优先级最高的是properties 配置文件优先级…

LoadRunner12.55的简介与安装

提示&#xff1a;https://mp.weixin.qq.com/s/iK-fh0VP7v8mNSDNxjkBow 文章目录 LoadRunner的简介与安装loadrunner概述loadrunner的下载与安装 LoadRunner的使用启用VuGen LoadRunner的简介与安装 LoadRunner官网&#xff1a;https://www.microfocus.com/zh-cn/products/load…

ESP Multi-Room Music 方案:支持音频实时同步播放 实现音乐互联共享

项目背景 随着无线通信技术的发展&#xff0c;针对不同音频应用领域的无线音频产品正不断涌现。近日&#xff0c;乐鑫科技推出了基于 Wi-Fi 的多扬声器互联共享音乐通信协议——ESP Multi-Room Music 方案。该方案使用乐鑫自研的基于 Wi-Fi 局域网的音频同步播放技术&#xff…

Pycharm修改文件默认打开方式 + CSV Editor插件使用

1、File —> Settings —> Editor —> File Types 然后将*csv添加到最上面 在plugins中下载插件&#xff0c;CSV Editor 备注&#xff1a;不在上一步的“File Types”中将*.csv设置为CSV格式&#xff0c;插件是不起作用的 就可以使用了