智能优化算法应用:基于卷尾猴算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于卷尾猴算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于卷尾猴算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.卷尾猴算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用卷尾猴算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.卷尾猴算法

卷尾猴算法原理请参考:https://blog.csdn.net/u011835903/article/details/123328669
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

卷尾猴算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明卷尾猴算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/211825.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

zookeeper1==zookeeper源码阅读,源码启动ZK集群

下载源码 Tags apache/zookeeper GitHub https://codeload.github.com/apache/zookeeper/zip/refs/tags/release-3.9.1 JDK8 MAVEN3.8.6 mvn -DskipTeststrue package 配置ZK1 zkServer.cmd中指出了启动类是 QuorumPeerMain QuorumPeer翻译成集群成员比较合理&#xf…

【Spring】依赖注入之属性注入详解

前言: 我们在进行web开发时,基本上一个接口对应一个实现类,比如IOrderService接口对应一个OrderServiceImpl实现类,给OrderServiceImpl标注Service注解后,Spring在启动时就会将其注册成bean进行统一管理。在Co…

【计算机网络学习之路】URL概念及组成

目录 一. URL是什么 二. URL的组成 三. encode和decode 前言 本系列文章是计算机网络学习的笔记,欢迎大佬们阅读,纠错,分享相关知识。希望可以与你共同进步。 本篇讲解使用浏览器不可或缺的部分——URL 一. URL是什么 域名及DNS 我们在…

SQL Server 数据库,创建触发器避免数据被更改

5.4触发器 触发器是一种特殊类型的存储过程,当表中的数据发生更新时将自动调用,以响应INSERT、 UPDATE 或DELETE 语句。 5.4.1什么是触发器 1.触发器的概念 触发器是在对表进行插入、更新或删除操作时自动执行的存储过程,触发器通常用于强…

nvm for windows使用与node/npm/yarn的配置

1 下载 nvm for windows download – github 下拉到Assets, 下载.exe文件 2 安装 安装到如下文件夹中 目录可以自己选, 可以换别的名字, 自己记住即可 新手建议全部看完再进行个人配置, 或者使用与博主一致的路径 D:\DevelopEnvironment\nvm3 配置nvm使用的镜像 node_mir…

sed 流式编辑器

使用方式: 1,前置指令 | sed 选项 定址符指令 2,sed 选项 定址符指令 被处理文档 选项: -n 屏蔽默认输出 -i写入文件 -r支持扩展正则 指令: p输出 d删除 s替换 sed -n 1p user //输出第1行 sed -n…

2023五岳杯量子计算挑战赛数学建模思路+模型+代码+论文

赛题思路:12月6日晚开赛后第一时间更新,获取见文末名片 “五岳杯”量子计算挑战赛,是国内专业的量子计算大赛,也是玻色量子首次联合移动云、南方科技大学共同发起的一场“企校联名”的国际竞赛,旨在深度融合“量子计算…

点评项目——短信登陆模块

2023.12.6 短信登陆如果基于session来实现,会存在session共享问题:多台Tomcat不能共享session存储空间,这会导致当请求切换到不同服务器时出现数据丢失的问题。 早期的解决办法是让session提供一个数据拷贝的功能,即让各个Tomcat的…

11.机器人系统仿真搭建gazebo环境、仿真深度相机、雷达、RGB相机

目录 1 gazebo仿真环境搭建 1.1 直接添加内置组件创建仿真环境 1.2 urdf、gazebo、rviz的综合应用 2 ROS_control 2.1 运动控制实现流程(Gazebo) 2.1.1 已经创建完毕的机器人模型,编写一个单独的 xacro 文件,为机器人模型添加传动装置以及控制器 …

【openssl】Window系统如何编译openssl

本文主要记录如何编译出windows版本的openss的lib库 如果需要获取RSA公钥私钥,推荐【openssl】 生成公钥私钥 |通过私钥获取公钥-CSDN博客 目录 1.下载openssl,获得openssl-master.zip。 2.下载Perl 3.下载NASM 4.配置perl和NASM的环境变量 5.进入…

应用程序无法找到xinput1_3.dll怎么办,xinput1_3.dll 丢失的解决方法

当电脑系统或特定应用程序无法找到或访问到 xinput1_3.dll 文件时,便会导致错误消息的出现,例如“找不到 xinput1_3.dll”、“xinput1_3.dll 丢失”等。这篇文章将大家讨论关于 xinput1_3.dll 文件的内容、xinput1_3.dll丢失问题的解决方法,以…

限流算法,基于go的gRPC 实现的

目录 一、单机限流 1、令牌桶算法 3、固定窗口限流算法 4、滑动窗口 二、集群限流 1、分布式固定窗口 (基于redis) 2、分布式滑动窗口 一、单机限流 1、令牌桶算法 令牌桶算法是当流量进入系统前需要获取令牌,没有令牌那么就要进行限…

Python之html2text,清晰解读HTML内容!

更多Python学习内容:ipengtao.com 大家好,我是彭涛,今天为大家分享 Python之html2text,清晰解读HTML内容,全文3900字,阅读大约10分钟。 HTML是Web开发中常见的标记语言,但有时我们需要将HTML内容…

关于 mapboxgl 的常用方法及效果

给地图标记点 实现效果 /*** 在地图上添加标记点* point: [lng, lat]* color: #83f7a0*/addMarkerOnMap(point, color #83f7a0) {const marker new mapboxgl.Marker({draggable: false,color: color,}).setLngLat(point).addTo(this.map);this.markersList.push(marker);},…

Ubuntu-rsyslog和systemd-journald日志服务

rsyslog日志服务 rsyslog作为传统的系统日志服务,把所有收集到的日志都记录到/var/log/目录下的各个日志文件中。 常见的日志文件如下: /var/log/messages 绝大多数的系统日志都记录到该文件 /var/log/secure 所有跟安全和认证授权等日志…

玩转Sass:掌握数据类型!

当我们在进行前端开发的时候,有时候需要使用一些不同的数据类型来处理样式,Sass 提供的这些数据类型可以帮助我们更高效地进行样式开发,本篇文章将为您详细介绍 Sass 中的数据类型。 布尔类型 在 Sass 中,布尔数据类型可以表示逻…

imutils库介绍及安装学习

目录 介绍 本机环境 安装 常用函数 使用方法 图像平移 图像缩放 图像旋转 骨架提取 通道转换 OPenCV版本的检测 综合测试 目录 介绍 本机环境 安装 常用函数 使用方法 图像平移 图像缩放 图像旋转 骨架提取 通道转换 OPenCV版本的检测 介绍 imutils 是一…

我不是DBA之慢SQL诊断方式

最近经常遇到技术开发跑来问我慢SQL优化相关工作,所以干脆出几篇SQL相关优化技术月报,我这里就以公司mysql一致的5.7版本来说明下。 在企业中慢SQL问题进场会遇到,尤其像我们这种ERP行业。 成熟的公司企业都会有晚上的慢SQL监控和预警机制。…

面试常问的dubbo的spi机制到底是什么?(下)

前文回顾 前一篇文章主要是讲了什么是spi机制,spi机制在java、spring中的不同实现的分析,同时也剖析了一下dubbo spi机制的实现ExtensionLoader的实现中关于实现类加载以及实现类分类的源码。 一、实现类对象构造 看实现类对象构造过程之前,先…

量子力学:探索微观世界的奇妙之旅

量子力学:探索微观世界的奇妙之旅 引言 在21世纪初,我们逐渐进入了一个以信息技术为主导的新时代。在这个时代,量子力学作为一门研究物质世界微观结构、粒子间相互作用以及能量与信息转换的基础科学,对我们的生活产生了深远的影响…