RNN:文本生成

文章目录

    • 一、完整代码
    • 二、过程实现
      • 2.1 导包
      • 2.2 数据准备
      • 2.3 字符分词
      • 2.4 构建数据集
      • 2.5 定义模型
      • 2.6 模型训练
      • 2.7 模型推理
    • 三、整体总结

采用RNN和unicode分词进行文本生成

一、完整代码

这里我们使用tensorflow实现,代码如下:

# 完整代码在这里
import tensorflow as tf
import keras_nlp
import numpy as nptokenizer = keras_nlp.tokenizers.UnicodeCodepointTokenizer(vocabulary_size=400)# tokens - ids
ids = tokenizer(['Why are you so funny?', 'how can i get you'])# ids - tokens
tokenizer.detokenize(ids)def split_input_target(sequence):input_text = sequence[:-1]target_text = sequence[1:]return input_text, target_text# 准备数据
text = open('./shakespeare.txt', 'rb').read().decode(encoding='utf-8')
dataset = tf.data.Dataset.from_tensor_slices(tokenizer(text))
dataset = dataset.batch(64, drop_remainder=True)
dataset = dataset.map(split_input_target).batch(64)input, ouput = dataset.take(1).get_single_element()# 定义模型d_model = 512
rnn_units = 1025class CustomModel(tf.keras.Model):def __init__(self, vocabulary_size, d_model, rnn_units):super().__init__(self)self.embedding = tf.keras.layers.Embedding(vocabulary_size, d_model)self.gru = tf.keras.layers.GRU(rnn_units, return_sequences=True, return_state=True)self.dense = tf.keras.layers.Dense(vocabulary_size, activation='softmax')def call(self, inputs, states=None, return_state=False, training=False):x = inputsx = self.embedding(x)if states is None:states = self.gru.get_initial_state(x)x, states = self.gru(x, initial_state=states, training=training)x = self.dense(x, training=training)if return_state:return x, stateselse:return xmodel = CustomModel(tokenizer.vocabulary_size(), d_model, rnn_units)# 查看模型结构
model(input)
model.summary()# 模型配置
model.compile(loss = tf.losses.SparseCategoricalCrossentropy(),optimizer='adam',metrics=['accuracy']
)# 模型训练
model.fit(dataset, epochs=3)# 模型推理
class InferenceModel(tf.keras.Model):def __init__(self, model, tokenizer):super().__init__(self)self.model = modelself.tokenizer = tokenizerdef generate(self, inputs, length, return_states=False):inputs = inputs = tf.constant(inputs)[tf.newaxis]states = Noneinput_ids = self.tokenizer(inputs).to_tensor()outputs = []for i in range(length):predicted_logits, states = model(inputs=input_ids, states=states, return_state=True)input_ids = tf.argmax(predicted_logits, axis=-1)outputs.append(input_ids[0][-1].numpy())outputs = self.tokenizer.detokenize(lst).numpy().decode('utf-8')if return_states:return outputs, stateselse:return outputsinfere = InferenceModel(model, tokenizer)# 开始推理
start_chars = 'hello'
outputs = infere.generate(start_chars, 1000)
print(start_chars + outputs)

二、过程实现

2.1 导包

先导包tensorflow, keras_nlp, numpy

import tensorflow as tf
import keras_nlp
import numpy as np

2.2 数据准备

数据来自莎士比亚的作品 storage.googleapis.com/download.tensorflow.org/data/shakespeare.txt;我们将其下载下来存储为shakespeare.txt

2.3 字符分词

这里我们使用unicode分词:将所有字符都作为一个词来进行分词

tokenizer = keras_nlp.tokenizers.UnicodeCodepointTokenizer(vocabulary_size=400)# tokens - ids
ids = tokenizer(['Why are you so funny?', 'how can i get you'])# ids - tokens
tokenizer.detokenize(ids)

2.4 构建数据集

利用tokenizertext数据构建数据集

def split_input_target(sequence):input_text = sequence[:-1]target_text = sequence[1:]return input_text, target_texttext = open('./shakespeare.txt', 'rb').read().decode(encoding='utf-8')
dataset = tf.data.Dataset.from_tensor_slices(tokenizer(text))
dataset = dataset.batch(64, drop_remainder=True)
dataset = dataset.map(split_input_target).batch(64)input, ouput = dataset.take(1).get_single_element()

2.5 定义模型

d_model = 512
rnn_units = 1025class CustomModel(tf.keras.Model):def __init__(self, vocabulary_size, d_model, rnn_units):super().__init__(self)self.embedding = tf.keras.layers.Embedding(vocabulary_size, d_model)self.gru = tf.keras.layers.GRU(rnn_units, return_sequences=True, return_state=True)self.dense = tf.keras.layers.Dense(vocabulary_size, activation='softmax')def call(self, inputs, states=None, return_state=False, training=False):x = inputsx = self.embedding(x)if states is None:states = self.gru.get_initial_state(x)x, states = self.gru(x, initial_state=states, training=training)x = self.dense(x, training=training)if return_state:return x, stateselse:return xmodel = CustomModel(tokenizer.vocabulary_size(), d_model, rnn_units)# 查看模型结构
model(input)
model.summary()

2.6 模型训练

model.compile(loss = tf.losses.SparseCategoricalCrossentropy(),optimizer='adam',metrics=['accuracy']
)model.fit(dataset, epochs=3)

2.7 模型推理

定义一个InferenceModel进行模型推理配置;

class InferenceModel(tf.keras.Model):def __init__(self, model, tokenizer):super().__init__(self)self.model = modelself.tokenizer = tokenizerdef generate(self, inputs, length, return_states=False):inputs = inputs = tf.constant(inputs)[tf.newaxis]states = Noneinput_ids = self.tokenizer(inputs).to_tensor()outputs = []for i in range(length):predicted_logits, states = model(inputs=input_ids, states=states, return_state=True)input_ids = tf.argmax(predicted_logits, axis=-1)outputs.append(input_ids[0][-1].numpy())outputs = self.tokenizer.detokenize(lst).numpy().decode('utf-8')if return_states:return outputs, stateselse:return outputsinfere = InferenceModel(model, tokenizer)start_chars = 'hello'
outputs = infere.generate(start_chars, 1000)
print(start_chars + outputs)

生成结果如下所示,感觉很差:

hellonofur us:
medous, teserwomador.
walled o y.
as
t aderemowate tinievearetyedust. manonels,
w?
workeneastily.
watrenerdores aner'shra
palathermalod, te a y, s adousced an
ptit: mamerethus:
bas as t: uaruriryedinesm's lesoureris lares palit al ancoup, maly thitts?
b veatrt
watyeleditenchitr sts, on fotearen, medan ur
tiblainou-lele priniseryo, ofonet manad plenerulyo
thilyr't th
palezedorine.
ti dous slas, sed, ang atad t,
wanti shew.
e
upede wadraredorenksenche:
wedemen stamesly ateara tiafin t t pes:
t: tus mo at
io my.
ane hbrelely berenerusedus' m tr;
p outellilid ng
ait tevadwantstry.
arafincara, es fody
'es pra aluserelyonine
pales corseryea aburures
angab:
sunelyothe: s al, chtaburoly o oonis s tioute tt,
pro.
tedeslenali: s 't ing h
sh, age de, anet: hathes: s es'tht,
as:
wedly at s serinechamai:
mored t.
t monatht t athoumonches le.
chededondirineared
ter
p y
letinalys
ani
aconen,
t rs:
t;et, tes-
luste aly,
thonort aly one telus, s mpsantenam ranthinarrame! a
pul; bon
s fofuly

三、整体总结

RNN结合unicode分词能进行文本生成但是效果一言难尽!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/212472.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【概率统计】如何理解概率密度函数及核密度估计

文章目录 概念回顾浅析概率密度函数概率值为0?PDF值大于1?一个栗子 核密度估计如何理解核密度估计核密度估计的应用 总结 概念回顾 直方图(Histogram):直方图是最直观的一种方法,它通过把数据划分为若干个区…

UDP协议实现群聊

代码: import java.awt.*; import java.awt.event.*; import javax.swing.*; import java.net.*; import java.io.IOException; import java.lang.String;public class liaotian extends JFrame{private static final int DEFAULT_PORT8899;private JLabel stateLB…

【C语言快速学习基础篇】之二控制语句、循环语句、隐式转换

文章目录 一、控制语句1.1、for循环1.2、while循环1.3、注意:for循环和while循环使用上面等同1.4、do while循环1.4.1while条件成立时1.4.2、while条件不成立时 C语言介绍 C语言是一门面向过程的计算机编程语言,与C、C#、Java等面向对象编程语言有所不同…

[MySQL--基础]事务的基础知识

前言 ⭐Hello!这里是欧_aita的博客。 ⭐今日语录:生活中最重要的决定就是要做出决定。 ⭐个人主页:欧_aita ψ(._. )>⭐个人专栏: 数据结构与算法 MySQL数据库 事务的目录📕 前言事务简介🚀事务操作🚀准…

晶圆测试工艺介绍

第一章、晶圆测试简介 晶圆测试的方式,主要是通过测试机(事先编好程序)和探针台的联动,依靠探针卡的接触衔接,进行晶圆级的芯片测试。 当探针卡Probecard 的探针正确接触晶圆wafer 内一颗 芯片die的每个接触点bondpads…

ROS 动态坐标变换

在ROS 中,坐标变换是一个重要的概念,因为它允许系统中的不同节点和模块以统一的方式描述物体的位置和方向。 动态坐标变换指的是当机器人或其环境中物体的位姿(位置和姿态)发生变化时,能够实时更新这些信息的过程。 …

Leetcode—290.单词规律【简单】

2023每日刷题&#xff08;五十一&#xff09; Leetcode—290.单词规律 实现代码 class Solution { public:bool wordPattern(string pattern, string s) {unordered_map<char, string> m1;unordered_map<string, char> m2;stringstream stro(s);string tmp;for(a…

axios调接口传参特殊字符丢失的问题(encodeURI 和 encodeURIComponent)

1、axios调接口特殊字符丢失的问题 项目开发过程中遇到一个接口传参&#xff0c;参数带特殊字符&#xff0c;axios调接口特殊字符丢失的问题 例如接口&#xff1a; get/user/detail/{name} name是个参数直接调接口的时候拼到接口上&#xff0c;get/user/detail/test123#$%&am…

python socket编程6 - 使用PyQt6 开发UI界面实现TCP server和TCP client单机通讯的例子

使用PyQt6 开发UI界面实现TCP server和TCP client单机通讯的示例。 一、PyQt6 实现的界面 二、TCP server代码的修改示意 界面提供网络参数的配置&#xff0c;以及提供人机交互过程中的数据获取和显示。 1、把上面的server代码封装成两个部分 A、class Server 负责接受UI界面…

网络层之IP数据报格式、数据报分片、IPv4、子网划分和子网掩码

学习的最大理由是想摆脱平庸&#xff0c;早一天就多一份人生的精彩&#xff1b;迟一天就多一天平庸的困扰。各位小伙伴&#xff0c;如果您&#xff1a; 想系统/深入学习某技术知识点… 一个人摸索学习很难坚持&#xff0c;想组团高效学习… 想写博客但无从下手&#xff0c;急需…

我有才打造知识付费小程序

一站式线上线下活动管理 为用户提供“精彩城市生活和人脉资源”。 在线活动提供创业、互联网、科技、投资、金融、教育、亲子、生活、聚会交友、医疗、设计、分享会、脱口秀、音乐演出等多种活动类型, 为职场白领提升技能、拓展人脉、聚会交友的首选平台。 为主办方提供“一…

Kubernetes(K8s)Pod控制器详解-06

Pod控制器详解 Pod控制器介绍 Pod是kubernetes的最小管理单元&#xff0c;在kubernetes中&#xff0c;按照pod的创建方式可以将其分为两类&#xff1a; 自主式pod&#xff1a;kubernetes直接创建出来的Pod&#xff0c;这种pod删除后就没有了&#xff0c;也不会重建 控制器创建…

⭐Unity 搭建UDP客户端(01) 配合网络调试助手测试

1.接收来自服务器的消息 using System.Net; using System.Net.Sockets; using System.Text; using System.Threading; using UnityEngine;public class UDPManager:MonoBehaviour {public string recvStr; //服务器返回值public string UDPClientAddRess "192.168.2.39&q…

活动回顾|德州仪器嵌入式技术创新发展研讨会(上海站)成功举办,信驰达科技携手TI推动技术创新

2023年11月28日&#xff0c;德州仪器(TI)嵌入式技术创新发展研讨会在上海顺利举办。作为TI中国第三方IDH&#xff0c;深圳市信驰达科技有限公司受邀参加&#xff0c;并设置展位&#xff0c;展出CC2340系列低功耗蓝牙模块及TPMS、蓝牙数字钥匙解决方案&#xff0c;与众多业内伙伴…

Sbatch, Salloc提交任务相关

salloc 申请计算节点&#xff0c;然后登录到申请到的计算节点上运行指令&#xff1b; salloc的参数与sbatch相同&#xff0c;该部分先介绍一个简单的使用案例&#xff1b;随后介绍一个GPU的使用案例&#xff1b;最后介绍一个跨节点使用案例&#xff1b; 首先是一个简单的例子&a…

Python----多态

1、什么是多态 多态指的是一类事物有多种形态。 定义&#xff1a;多态是一种使用对象的方式&#xff0c;子类重写父类方法&#xff0c;调用不同子类对象的相同父类方法&#xff0c;可以产生不同的执行结果。 ① 多态依赖继承 ② 子类方法必须要重写父类方法 首先定义一个父类…

单细胞seurat-细胞比例分析-画图详细教程

大家好&#xff0c;今天我们来画单细胞中最简单的细胞比例图~ 1.老规矩&#xff0c;先加载pbmc数据 dir.create("~/gzh/细胞比例") setwd("~/gzh/细胞比例")subset_datareadRDS("~/gzh/pbmc3k_final.rds") table(stringr::str_split(string c…

dockers安装rabbitmq

RabbitMQ: easy to use, flexible messaging and streaming — RabbitMQhttps://www.rabbitmq.com/ Downloading and Installing RabbitMQ — RabbitMQ docker run -it --rm --name rabbitmq -p 5672:5672 -p 15672:15672 rabbitmq:3.12-management 之后参照&#xff1a;dock…

有了安卓模拟器,就能在Windows 10或11上像使用安卓操作系统一样使用安卓

你可以使用Android模拟器在Windows 11或Windows 10中运行Android应用程序。如果你喜欢的应用程序只在手机上运行,但你想在电脑上使用,这些模拟器会很有用。 BlueStacks 与整个操作系统模拟器不同,BlueStacks只在Windows上模拟Android应用程序。它真的很容易使用,所以你不需…

【二叉树】

文章目录 树形结构注意要点细分概念树在生活中的应用 二叉树什么是二叉树二叉树特点&#xff1a;两种特殊的二叉树二叉树的性质二叉树性质的练习二叉树的存储二叉树的遍历前序遍历中序遍历后序遍历遍历练习 树形结构 树是一种非线性的数据结构&#xff0c;它具有以下的特点&am…