c++新经典模板与泛型编程:const修饰符的移除与增加

const修饰符的移除

让你来写移除const修饰符,你会怎么样来写?
😂😂trait类模板,如下


#include <iostream>// 泛化版本
template<typename T>
struct RemoveConst
{using type = T;
};// 特化版本
template<typename T>
struct RemoveConst<const T>
{using type = T;
};// 根据需要,可能还要增加其他特化版本
template<typename T>
using RemoveConst_t = typename RemoveConst<T>::type;int main()
{// nca 是int类型// c++标准库中的std::remove_const也比较类似RemoveConst_t<const int> nca = 15;// 可以给nca重新赋值nca = 18;return 0;
}

退化技术

  1. 某些类型一旦传递给函数模板(通过函数模板来推断相关的类型),那么推断出来的类型就会产生退化。所谓退化(decay),就是把类型中的一些修饰符丢弃了。例如,const int中的const丢弃后,就变成int类型,那么对于const int类型,int类型就是一种退化的表现。
  2. c++标准库中有一个类模板std::decay,这个类模板的作用就是把一个类型退化掉(就是把类型中的一些修饰符丢掉)。
	std::decay<const int&>::type nb = 28;// nb的类型为int类型std::cout << "nb的类型为:" << typeid(decltype(nb)).name() << std::endl;

如何实现一个类似std::decay功能的trait类模板呢?

// b.cpp
int g_array[10];// main.cpp
#include <iostream>// 泛化版本
template<typename T>
struct RemoveReference
{using type = T;
};// 特化版本
template<typename T>
struct RemoveReference<T&>
{using type = T;
};
template<typename T>
struct RemoveReference<T&&>  // 这个特化能适应 const T&&应该是伴随我一生,难以理解的噩梦了
{using type = T;
};// 泛化版本
template<typename T>
struct RemoveConst
{using type = T;
};// 特化版本
template<typename T>
struct RemoveConst<const T>
{using type = T;
};// 根据需要,可能还要增加其他特化版本
template<typename T>
using RemoveConst_t = typename RemoveConst<T>::type;template<typename T>
struct RemoveCR : RemoveConst<typename RemoveReference<T>::type>
{ // 把const和引用修饰符去掉
};template<typename T>
using RemoveCR_t = typename RemoveCR<T>::type;// Decay的trait类模板
// 泛化版本
template<typename T>
struct Decay : RemoveCR<T>
{
};// 特化版本,这个特化版本没有继承任何父类
// 有边界数组转换成指针
template<typename T,std::size_t size>
struct Decay<T[size]>
{using type = T*;
};// 无边界数组转换成指针
template<typename T>
struct Decay<T[]>
{using type = T*;
};extern int g_array[];int main()
{RemoveCR_t<const int&&> rcrobj = 15; // rcrobj为int类型,只能叹为观止,惊叹rcrobj鬼斧神工地成了int类型int arr[2] = { 1,2 };Decay<decltype(arr)>::type my_array;std::cout << "my_array的类型为: " << typeid(decltype(my_array)).name() << std::endl;Decay<decltype(g_array)>::type my_array_2;std::cout << "my_array_2的类型为:" << typeid(decltype(my_array_2)).name() << std::endl;return 0;
}

在这里插入图片描述

  1. 上述函数代表类型:void()
  2. 可以使用函数指针指向某种函数类型,如果指向void(),函数指针应该是void(*)()
  3. 如果不为函数名退化为函数指针写一个Decay的特化版本,那么,传入testFunc2这个函数类型,
    得到的返回类型依旧是void(),换句话说传入什么类型,就返回什么类型

#include <iostream>// 泛化版本
template<typename T>
struct RemoveReference
{using type = T;
};// 特化版本
template<typename T>
struct RemoveReference<T&>
{using type = T;
};
template<typename T>
struct RemoveReference<T&&>  // 这个特化能适应 const T&&应该是伴随我一生,难以理解的噩梦了
{using type = T;
};// 泛化版本
template<typename T>
struct RemoveConst
{using type = T;
};// 特化版本
template<typename T>
struct RemoveConst<const T>
{using type = T;
};// 根据需要,可能还要增加其他特化版本
template<typename T>
using RemoveConst_t = typename RemoveConst<T>::type;template<typename T>
struct RemoveCR : RemoveConst<typename RemoveReference<T>::type>
{ // 把const和引用修饰符去掉
};template<typename T>
using RemoveCR_t = typename RemoveCR<T>::type;// Decay的trait类模板
// 泛化版本
template<typename T>
struct Decay : RemoveCR<T>
{
};// 特化版本,这个特化版本没有继承任何父类
// 有边界数组转换成指针
template<typename T,std::size_t size>
struct Decay<T[size]>
{using type = T*;
};// 无边界数组转换成指针
template<typename T>
struct Decay<T[]>
{using type = T*;
};extern int g_array[];// 简单的函数
void testFunc2()
{std::cout << "testFunc2()执行了" << std::endl;
}void rfunc()
{std::cout << "rfunc执行了" << std::endl;
}int main()
{RemoveCR_t<const int&&> rcrobj = 15; // rcrobj为int类型,只能叹为观止,惊叹rcrobj鬼斧神工地成了int类型int arr[2] = { 1,2 };Decay<decltype(arr)>::type my_array;std::cout << "my_array的类型为: " << typeid(decltype(my_array)).name() << std::endl;Decay<decltype(g_array)>::type my_array_2;std::cout << "my_array_2的类型为:" << typeid(decltype(my_array_2)).name() << std::endl;// 2Decay<decltype(testFunc2)>::type rfunc;std::cout << "rfunc类型为:" << typeid(decltype(rfunc)).name() << std::endl;rfunc();return 0;
}

在这里插入图片描述

现在容易理解写一个Decay特化版本把函数名(退化成)函数指针这件事了
因为函数可能有任何的返回类型以及任何数量和类型的参数,所以这个Decay的特化版本比较特殊
需要可变参模板来实现


#include <iostream>// 泛化版本
template<typename T>
struct RemoveReference
{using type = T;
};// 特化版本
template<typename T>
struct RemoveReference<T&>
{using type = T;
};
template<typename T>
struct RemoveReference<T&&>  // 这个特化能适应 const T&&应该是伴随我一生,难以理解的噩梦了
{using type = T;
};// 泛化版本
template<typename T>
struct RemoveConst
{using type = T;
};// 特化版本
template<typename T>
struct RemoveConst<const T>
{using type = T;
};// 根据需要,可能还要增加其他特化版本
template<typename T>
using RemoveConst_t = typename RemoveConst<T>::type;template<typename T>
struct RemoveCR : RemoveConst<typename RemoveReference<T>::type>
{ // 把const和引用修饰符去掉
};template<typename T>
using RemoveCR_t = typename RemoveCR<T>::type;// Decay的trait类模板
// 泛化版本
template<typename T>
struct Decay : RemoveCR<T>
{
};// 特化版本,这个特化版本没有继承任何父类
// 有边界数组转换成指针
template<typename T,std::size_t size>
struct Decay<T[size]>
{using type = T*;
};// 无边界数组转换成指针
template<typename T>
struct Decay<T[]>
{using type = T*;
};extern int g_array[];// 简单的函数
void testFunc2()
{std::cout << "testFunc2()执行了" << std::endl;
}// 3
template<typename T,typename... Args>
struct Decay<T(Args...)> // 返回类型是T,参数是Args...
{using type = T(*)(Args...);
};int main()
{RemoveCR_t<const int&&> rcrobj = 15; // rcrobj为int类型,只能叹为观止,惊叹rcrobj鬼斧神工地成了int类型int arr[2] = { 1,2 };Decay<decltype(arr)>::type my_array;std::cout << "my_array的类型为: " << typeid(decltype(my_array)).name() << std::endl;Decay<decltype(g_array)>::type my_array_2;std::cout << "my_array_2的类型为:" << typeid(decltype(my_array_2)).name() << std::endl;#if 0// 2Decay<decltype(testFunc2)>::type rfunc;std::cout << "rfunc类型为:" << typeid(decltype(rfunc)).name() << std::endl;rfunc();
#endif // 3Decay<decltype(testFunc2)>::type rfunc_1;std::cout << "rfunc类型为:" << typeid(decltype(rfunc_1)).name() << std::endl;rfunc_1 = testFunc2;rfunc_1();return 0;
}

在这里插入图片描述
别名模板的威力
通过别名模板把Decay::type类型名简化成Decay_t,代码如下

template<typename T>
using Decay_t = typename Decay<T>::type;

于是,main()函数中的代码,可以写成

Decay<decltype(testFunc2)>::type rfunc;

就可以写成

Decay_t<decltype(testFunc2)> rfunc;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/214414.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

kafka入门(四):消费者

消费者 (Consumer ) 消费者 订阅 Kafka 中的主题 (Topic) &#xff0c;并 拉取消息。 消费者群组&#xff08; Consumer Group&#xff09; 每一个消费者都有一个对应的 消费者群组。 一个群组里的消费者订阅的是同一个主题&#xff0c;每个消费者接收主题的一部分分区的消息…

Stable Diffusion 系列教程 - 2 WebUI 参数详解

Stable Diffusion 的整个算法组合为&#xff1a; UNet VAE 文本编码器 UNet&#xff1a;就是我们大模型里的核心。 文本编码器&#xff1a;将我们的prompt进行encoder为算法能理解的内容&#xff08;可以理解为SD外包出去的项目CLIP&#xff09;。 VAE&#xff1a;对UNet生…

Java_LinkedList链表详解

目录 前言 ArrayList的缺陷 链表 链表的概念及结构 链表的种类 1.单向或双向 2.带头或不带头 3.循环或不循环 LinkedList的使用 什么是LinkedList LinkedList的使用 LinkedList的构造 LinkedList的其他常用方法介绍 LinkedList的遍历 ArrayList和LinkedList的…

el-tree数据量过大,造成浏览器卡死、崩溃

el-tree数据量过大&#xff0c;造成浏览器卡死、崩溃 场景&#xff1a;树形结构展示&#xff0c;数据超级多&#xff0c;超过万条&#xff0c;每次打开都会崩溃 我这里采用的是引入新的插件虚拟树&#xff0c;它是参照element-plus 中TreeV2改造vue2.x版本虚拟化树形控件&…

golang开发之个微机器人的二次开发

简要描述&#xff1a; 下载消息中的文件 请求URL&#xff1a; http://域名地址/getMsgFile 请求方式&#xff1a; POST 请求头Headers&#xff1a; Content-Type&#xff1a;application/jsonAuthorization&#xff1a;login接口返回 参数&#xff1a; 参数名必选类型…

【Unity】Addressable包资源加载失败:CRC Mismatch.

Error while downloading Asset Bundle: CRC Mismatch. 是资源下载校验失败&#xff0c;但是资源和上次打包的资源是一样的。没有排查到原因&#xff0c;在谷歌搜索后看到 大概就是指Unity版本修改后打包&#xff0c;会破坏原来的CRC信息&#xff0c;导致导报出来的资源无法通…

Module build failed : Error : Vue packages version mismatch:

Vue packages version mismatch: - vue2.7.15 (E:\Workspace_ce\erp\erp-web\node_modules\vue\dist\vue.runtime.common.js) - vue-template-compiler2.6.11 (E:\Workspace_ce\erp\erp-web\node_modules\vue-template-compiler\package.json) 【问题解决了&#xff0c;我很不…

Mac电脑投屏AirServer 2024怎么下载安装激活许可期限

对于那些想要将 iPhone、iPad 或其他 iOS 设备上的小屏幕镜像到计算机上的大屏幕的人来说&#xff0c;AirPlay 是一个很好的工具。 基于此&#xff0c;AirServer 非常需要将您的 Mac 或 PC 变成 AirPlay 设备。 但是如何使用计算机上的设置对 iPhone 等 iOS 设备进行屏幕镜像&a…

【AIGC】Midjourney高级进阶版

Midjourney 真是越玩越上头&#xff0c;真是给它的想象力跪了~ 研究了官方API&#xff0c;出一个进阶版教程 命令 旨在介绍Midjourney在Discord频道中的文本框中支持的指令。 1&#xff09;shorten 简化Prompt 该指令可以将输入的Prompt为模型可以理解的语言。模型理解语言…

【C++ 程序设计入门基础】- 第3节-循环结构02

目录 while 语句 案例 while 循环 输入一个整数 n &#xff0c;输出 1~n 的所有整数。 查看运行结果&#xff1a; while 语句结构解析 do while 语句 案例 do while 循环 输入一个整数n&#xff0c;输出1&#xff5e;n的所有整数。 查看运行结果 while、do while的区别 …

我的NPI项目之Android 安全系列 -- Android Strongbox 初识

从Android9(Pie)开始,Google强烈建议支持Strongbox. 具体描述如下: 一直到目前的Android14. 对应的内容也一并贴出来: 说人话就是Android开始通过独立于主SoC的单元进行密钥存储了。 通常&#xff0c;这样的单元就是我们通常称作的Secure Element&#xff08;SE&#xff09;&am…

linux7安装python3.12.1教程

1.下载tar.gz包 地址&#xff1a;Python Release Python 3.12.1 | Python.org 2.上传包到linux服并解压 cd /home/local/ ll tar -zxvf Python-3.12.1.tgz 3.安装编译python所需环境 yum install -y gcc yum install -y zlib* yum -y install zlib-devel bzip2-devel opens…

MATLAB | 官方举办的动图绘制大赛 | 第四周(收官周)赛情回顾

MATHWORKS官方举办的迷你黑客大赛第三期(MATLAB Flipbook Mini Hack)圆满结束&#xff0c;虽然我的水平和很多大佬还有比较大的差距&#xff0c;但所有奖也算是拿满了&#xff1a; 专家评选前三名&#xff0c;以及投票榜前十&#xff1a;~ 每周的阶段性获奖者&#xff1a; 下面…

MongoDB的连接数据库,创建、删除数据库,创建、删除集合命令

本文主要介绍MongoDB的连接数据库&#xff0c;创建、删除数据库&#xff0c;创建、删除集合命令。 目录 MongoDB连接数据库连接到本地 MongoDB 实例连接到远程 MongoDB 实例 MongoDB创建和删除数据库MongoDB创建和删除集合创建集合删除集合 MongoDB连接数据库 连接 MongoDB 数…

2023济南大学acm新生赛题解

通过答题情况的难度系数&#xff1a; 签到&#xff1a;ACI 铜牌题&#xff1a;BG 银牌题&#xff1a;EF 金牌题&#xff1a;DHJKO 赛中暂未有人通过&#xff1a;LMNP A - AB Problem 直接根据公式计算就行。 #include<stdio.h> int main(){int a,b;scanf("%…

2021年第十届数学建模国际赛小美赛A题气道阻力的评估解题全过程文档及程序

2021年第十届数学建模国际赛小美赛 A题 气道阻力的评估 原题再现&#xff1a; 气道阻力的定义是通过肺气道产生单位气流所需的经肺压力的变化。更简单地说&#xff0c;它是嘴和肺泡之间的压力差&#xff0c;除以气流。影响气道阻力的因素是多方面的&#xff0c;我们需要探讨这…

理解基于 Hadoop 生态的大数据技术架构

转眼间&#xff0c;一年又悄然而逝&#xff0c;时光荏苒&#xff0c;岁月如梭。当回首这段光阴&#xff0c;不禁感叹时间的匆匆&#xff0c;仿佛只是一个眨眼的瞬间&#xff0c;一年的旅程已成为过去&#xff0c;而如今又到了画饼的时刻了 &#xff01; 基于 Hadoop 生态的大数…

倪海厦:教你正确煮中药,发挥最大药效

同样的一个汤剂&#xff0c;我开给你&#xff0c;你如果煮的方法不对&#xff0c;吃下去效果就没那么好。 所以&#xff0c;汤&#xff0c;取它的迅捷&#xff0c;速度很快&#xff0c;煮汤的时候还有技巧&#xff0c;你喝汤料的时候&#xff0c;你到底是喝它的气&#xff0c;…

Codeforces Round 913 (Div. 3) A~E

目录 A. Rook 问题分析: B. YetnotherrokenKeoard 问题分析: C. Removal of Unattractive Pairs 问题分析: D. Jumping Through Segments 问题分析: E. Good Triples 问题分析: A. Rook 问题分析: 给一个棋子将其同行同列的位置输出 #include<bits/s…

[每周一更]-(第76期):Go源码阅读与分析的方式

读源码可以深层理解Go的编写方式&#xff0c;理解作者们的思维方式&#xff1b;也有助于对Go语法用法深刻的理解&#xff0c;我们从这一篇说一下如何读源码&#xff0c;从哪些源码着手&#xff0c;从 简单到深入的方式学习源码&#xff1b; 学习源码也是一个修炼过程&#xff0…