代码随想录算法训练营 | day48 动态规划 198.打家劫舍,213.打家劫舍Ⅱ,337.打家劫舍Ⅲ

刷题

198.打家劫舍

题目链接 | 文章讲解 | 视频讲解

题目:你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

  • 示例 1:

  • 输入:[1,2,3,1]

  • 输出:4

解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。 偷窃到的最高金额 = 1 + 3 = 4 。

  • 示例 2:

  • 输入:[2,7,9,3,1]

  • 输出:12 解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。 偷窃到的最高金额 = 2 + 9 + 1 = 12 。

提示:

  • 0 <= nums.length <= 100

  • 0 <= nums[i] <= 400

思路及实现

大家如果刚接触这样的题目,会有点困惑,当前的状态我是偷还是不偷呢?

仔细一想,当前房屋偷与不偷取决于 前一个房屋和前两个房屋是否被偷了。

所以这里就更感觉到,当前状态和前面状态会有一种依赖关系,那么这种依赖关系都是动规的递推公式。

当然以上是大概思路,打家劫舍是dp解决的经典问题,接下来我们来动规五部曲分析如下:

1.确定dp数组(dp table)以及下标的含义

dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]

2.确定递推公式

决定dp[i]的因素就是第i房间偷还是不偷。

如果偷第i房间,那么dp[i] = dp[i - 2] + nums[i] ,即:第i-1房一定是不考虑的,找出 下标i-2(包括i-2)以内的房屋,最多可以偷窃的金额为dp[i-2] 加上第i房间偷到的钱。

如果不偷第i房间,那么dp[i] = dp[i - 1],即考 虑i-1房,(注意这里是考虑,并不是一定要偷i-1房,这是很多同学容易混淆的点

然后dp[i]取最大值,即dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);

3.dp数组如何初始化

从递推公式dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);可以看出,递推公式的基础就是dp[0] 和 dp[1]

从dp[i]的定义上来讲,dp[0] 一定是 nums[0],dp[1]就是nums[0]和nums[1]的最大值即:dp[1] = max(nums[0], nums[1]);

4.确定遍历顺序

dp[i] 是根据dp[i - 2] 和 dp[i - 1] 推导出来的,那么一定是从前到后遍历!

5.举例推导dp数组

以示例二,输入[2,7,9,3,1]为例。

红框dp[nums.size() - 1]为结果。

以上分析完毕,代码如下:

// 动态规划
class Solution {public int rob(int[] nums) {if (nums == null || nums.length == 0) return 0;if (nums.length == 1) return nums[0];
​int[] dp = new int[nums.length];dp[0] = nums[0];dp[1] = Math.max(dp[0], nums[1]);for (int i = 2; i < nums.length; i++) {dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);}
​return dp[nums.length - 1];}
}
​
// 使用滚动数组思想,优化空间
// 分析本题可以发现,所求结果仅依赖于前两种状态,此时可以使用滚动数组思想将空间复杂度降低为3个空间
class Solution {public int rob(int[] nums) {int len = nums.length;
​if (len == 0) return 0;else if (len == 1) return nums[0];else if (len == 2) return Math.max(nums[0],nums[1]);
​
​int[] result = new int[3]; //存放选择的结果result[0] = nums[0];result[1] = Math.max(nums[0],nums[1]);​for(int i=2;i<len;i++){
​result[2] = Math.max(result[0]+nums[i],result[1]);
​result[0] = result[1];result[1] = result[2];}return result[2];}
}
​
// 进一步对滚动数组的空间优化 dp数组只存与计算相关的两次数据
class Solution {public int rob(int[] nums) {if (nums.length == 1)  {return nums[0];}// 初始化dp数组// 优化空间 dp数组只用2格空间 只记录与当前计算相关的前两个结果int[] dp = new int[2];dp[0] = nums[0];dp[1] = Math.max(nums[0],nums[1]);int res = 0;// 遍历for (int i = 2; i < nums.length; i++) {res = Math.max((dp[0] + nums[i]) , dp[1] );dp[0] = dp[1];dp[1] = res;}// 输出结果return dp[1];}
}

213.打家劫舍Ⅱ

题目链接 | 文章讲解 | 视频讲解

题目:你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。

给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,能够偷窃到的最高金额。

示例 1:

  • 输入:nums = [2,3,2]

  • 输出:3

  • 解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。

  • 示例 2:

  • 输入:nums = [1,2,3,1]

  • 输出:4

  • 解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。偷窃到的最高金额 = 1 + 3 = 4 。

  • 示例 3:

  • 输入:nums = [0]

  • 输出:0

提示:

  • 1 <= nums.length <= 100

  • 0 <= nums[i] <= 1000

思路及实现

对于一个数组,成环的话主要有如下三种情况:

  • 情况一:考虑不包含首尾元素

  • 情况二:考虑包含首元素,不包含尾元素

  • 情况三:考虑包含尾元素,不包含首元素

注意我这里用的是"考虑",例如情况三,虽然是考虑包含尾元素,但不一定要选尾部元素! 对于情况三,取nums[1] 和 nums[3]就是最大的。

而情况二 和 情况三 都包含了情况一了,所以只考虑情况二和情况三就可以了

分析到这里,本题其实比较简单了。 剩下的和198.打家劫舍 就是一样的了。

代码如下:

class Solution {public int rob(int[] nums) {if (nums == null || nums.length == 0)return 0;int len = nums.length;if (len == 1)return nums[0];return Math.max(robAction(nums, 0, len - 1), robAction(nums, 1, len));}
​int robAction(int[] nums, int start, int end) {int x = 0, y = 0, z = 0;for (int i = start; i < end; i++) {y = z;z = Math.max(y, x + nums[i]);x = y;}return z;}
}

337.打家劫舍Ⅲ

题目链接 | 文章讲解 | 视频讲解

题目:在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。 除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。

计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。

思路及实现

对于树的话,首先就要想到遍历方式,前中后序(深度优先搜索)还是层序遍历(广度优先搜索)。

本题一定是要后序遍历,因为通过递归函数的返回值来做下一步计算

与198.打家劫舍,213.打家劫舍II一样,关键是要讨论当前节点抢还是不抢。

如果抢了当前节点,两个孩子就不能动,如果没抢当前节点,就可以考虑抢左右孩子(注意这里说的是“考虑”

可以使用一个长度为2的数组,记录当前节点偷与不偷所得到的的最大金钱。

这道题目算是树形dp的入门题目,因为是在树上进行状态转移,我们在讲解二叉树的时候说过递归三部曲,那么下面我以递归三部曲为框架,其中融合动规五部曲的内容来进行讲解

1.确定递归函数的参数和返回值

这里我们要求一个节点 偷与不偷的两个状态所得到的金钱,那么返回值就是一个长度为2的数组。

dp数组(dp table)以及下标的含义:下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱。

所以本题dp数组就是一个长度为2的数组!

那么有同学可能疑惑,长度为2的数组怎么标记树中每个节点的状态呢?

别忘了在递归的过程中,系统栈会保存每一层递归的参数

如果还不理解的话,就接着往下看,看到代码就理解了哈。

2.确定终止条件

在遍历的过程中,如果遇到空节点的话,很明显,无论偷还是不偷都是0,所以就返回。也相当于dp数组的初始化。

3.确定遍历顺序

首先明确的是使用后序遍历。 因为要通过递归函数的返回值来做下一步计算。

通过递归左节点,得到左节点偷与不偷的金钱。

通过递归右节点,得到右节点偷与不偷的金钱。

4.确定单层递归的逻辑

如果是偷当前节点,那么左右孩子就不能偷,val1 = cur.val + left[0] + right[0]; (如果对下标含义不理解就再回顾一下dp数组的含义

如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:val2 = max(left[0], left[1]) + max(right[0], right[1]);

最后当前节点的状态就是{val2, val1}; 即:{不偷当前节点得到的最大金钱,偷当前节点得到的最大金钱}

5.举例推导dp数组

以示例1为例,dp数组状态如下:(注意用后序遍历的方式推导

最后头结点就是 取下标0 和 下标1的最大值就是偷得的最大金钱

递归三部曲与动规五部曲分析完毕,代码如下:

class Solution {// 1.递归去偷,超时public int rob(TreeNode root) {if (root == null)return 0;int money = root.val;if (root.left != null) {money += rob(root.left.left) + rob(root.left.right);}if (root.right != null) {money += rob(root.right.left) + rob(root.right.right);}return Math.max(money, rob(root.left) + rob(root.right));}// 2.递归去偷,记录状态// 执行用时:3 ms , 在所有 Java 提交中击败了 56.24% 的用户public int rob1(TreeNode root) {Map<TreeNode, Integer> memo = new HashMap<>();return robAction(root, memo);}int robAction(TreeNode root, Map<TreeNode, Integer> memo) {if (root == null)return 0;if (memo.containsKey(root))return memo.get(root);int money = root.val;if (root.left != null) {money += robAction(root.left.left, memo) + robAction(root.left.right, memo);}if (root.right != null) {money += robAction(root.right.left, memo) + robAction(root.right.right, memo);}int res = Math.max(money, robAction(root.left, memo) + robAction(root.right, memo));memo.put(root, res);return res;}// 3.状态标记递归// 执行用时:0 ms , 在所有 Java 提交中击败了 100% 的用户// 不偷:Max(左孩子不偷,左孩子偷) + Max(右孩子不偷,右孩子偷)// root[0] = Math.max(rob(root.left)[0], rob(root.left)[1]) +// Math.max(rob(root.right)[0], rob(root.right)[1])// 偷:左孩子不偷+ 右孩子不偷 + 当前节点偷// root[1] = rob(root.left)[0] + rob(root.right)[0] + root.val;public int rob3(TreeNode root) {int[] res = robAction1(root);return Math.max(res[0], res[1]);}int[] robAction1(TreeNode root) {int res[] = new int[2];if (root == null)return res;int[] left = robAction1(root.left);int[] right = robAction1(root.right);res[0] = Math.max(left[0], left[1]) + Math.max(right[0], right[1]);res[1] = root.val + left[0] + right[0];return res;}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/215692.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python实战演练之迎接冬至的第一场雪

写在前面 WINTER IS COMING Python实现大雪纷飞的效果&#xff0c;完整代码在文末哦~ 准备开始 WINTER IS COMING Python是一种高级编程语言&#xff0c;Turtle是Python的一个图形化模块&#xff0c;它可以帮助学习者更好地理解编程概念&#xff0c;同时可以进行图形化编程。 …

论文笔记:A review on multi-label learning

一、介绍 传统的监督学习是单标签学习&#xff0c;但是现实中一个实例可能对应多个标签。这篇文章介绍了多标签分类的定义和评价指标、多标签学习的算法还有其他相关的任务。 二、问题相关定义 2.1 多标签学习任务 假设 X R d X R^d XRd&#xff0c;表示d维的输入空间&am…

C# WPF上位机开发(简易图像处理软件)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 图像处理是工业生产重要的环节。不管是定位、测量、检测还是识别&#xff0c;图像处理在工业生产中扮演重要的角色。而c#由于自身快速开发的特点&a…

Python网络爬虫环境的安装指南

网络爬虫是一种自动化的网页数据抓取技术&#xff0c;广泛用于数据挖掘、信息搜集和互联网研究等领域。Python作为一种强大的编程语言&#xff0c;拥有丰富的库支持网络爬虫的开发。本文将为你详细介绍如何在你的计算机上安装Python网络爬虫环境。 一、安装python开发环境 进…

SCUM私人服务器搭建部署教程

以下是搭建SCUM私服的步骤&#xff1a; 1. 下载并安装SteamCMD。SteamCMD是一个命令行工具&#xff0c;用于从Steam下载和更新游戏服务器。你可以从Steam官网下载并安装它。 2. 创建一个文件夹来存储服务器文件。在你的计算机上创建一个文件夹&#xff0c;用于存储SCUM服务器文…

JavaWeb(十二)

一、Filter概述 Filter 表示过滤器&#xff0c;是 JavaWeb 三大组件(Servlet、Filter、Listener)之一。 过滤器可以把对资源的请求拦截下来&#xff0c;从而实现一些特殊的功能。 如下图所示&#xff0c;浏览器可以访问服务器上的所有的资源&#xff08;servlet、jsp、html等…

【玩转TableAgent数据智能分析】TableAgent全功能详解及多领域数据分析实践(中)不同领域数据分析实践

3 电影点评数据分析实践 利用本身自带的电影点评数据&#xff0c;来具体看一下TableAgent的分析能力&#xff0c;选择电影点评数据&#xff0c;智能体会自动导入该数据DMSC20000.csv&#xff0c;大小为3.3 MB。在数据信息展示区&#xff0c;就会显示出该数据&#xff0c;并提供…

C++STL的vector模拟实现

文章目录 前言成员变量成员函数构造函数push_backpop_backinserterase析构函数拷贝构造 前言 成员变量 namespace but {template<class T>class vector{public:typedef T* iterator;private:iterator _start;iterator _finish;iterator _end_of_storage;}; }我们之前实…

网易有道强力开源中英双语语音克隆

项目地址&#xff08;基于PromptTTS&#xff09;&#xff1a; https://github.com/netease-youdao/EmotiVoice EmotiVoice Docker镜像 尝试EmotiVoice最简单的方法是运行docker镜像。你需要一台带有NVidia GPU的机器。先按照Linux和Windows WSL2平台的说明安装NVidia容器工具…

线上盲盒小程序,开启互联网盲盒时代

近年来&#xff0c;盲盒经济在国内非常火爆&#xff0c;各类盲盒品牌层出不穷&#xff0c;深受国内外年轻人、消费者的喜爱。 目前&#xff0c;根据数据显示&#xff0c;盲盒市场不仅在线下异常火热&#xff0c;线上盲盒也是成为了大众的新选择。各类电商平台中盲盒的成交额更…

使用node实现链接数据库并对数据库进行增删改查的后端接口

环境 node npm 编辑器 vscode 项目配置 新建目录 用vscode打开 终端输入 npm init -y npm install mysql npm install express 代码 安装好之后的代码页面 新建 在根目录新建api.js文件 const express require(express); const db require(./db/index); const app…

计算机考研408-计算机网络、操作系统整书知识点脑图

计算机网络、操作系统整书知识点脑图 今天突然想起来考研期间为了方便记忆&#xff0c;费了很大力气整理了计算机网络、操作系统两本书知识点的脑图&#xff0c;想着放着也没啥用&#xff0c;分享出来给大家看看 但是思维导图格式的东西好像没法直接发成文章&#xff0c;上传…

使用Windows10的OneDrive应用程序,让文件管理上一个台阶

这篇文章解释了如何通过在文件资源管理器和OneDrive应用程序之间轮换&#xff0c;将OneDrive与Windows 10一起使用。 使用文件资源管理器进行组织 你不必将所有OneDrive文件都保存在硬盘上&#xff0c;事实上&#xff0c;你可以将任意数量的文件留在云中&#xff08;也就是微…

SpringBoot-Swagger3

SpringBoot——2.7.3版本整合Swagger3-CSDN博客文章浏览阅读5.4k次&#xff0c;点赞6次&#xff0c;收藏17次。Swagger2&#xff08;基于openApi3&#xff09;已经在17年停止维护了&#xff0c;取而代之的是 sagger3&#xff08;基于openApi3&#xff09;&#xff0c;而国内几乎…

C++STL之List的实现

首先我们要实现List的STL,我们首先要学会双向带头链表的数据结构。那么第一步肯定是要构建我们的节点的数据结构。 首先要有数据域&#xff0c;前后指针域即可。 再通过模板类进行模板化。 然后再写List的构造函数&#xff0c;这个地方用T&,通过引用就可以减少一次形参拷…

机械中常用的一些术语

目录 一、OEMSOP:SOP编写指南 WI(标准作业指导书):标准作业程序 &#xff08;SOP&#xff09;:SOP和WI的区别&#xff1a;一、PFC、FMEA、PCP、WIPPAP、PSW&#xff1a;APQP&#xff1a;BOM&#xff08;Bill of Material&#xff09;物料清单DV&#xff08;设计验证&#xff09…

我的创作三周年纪念日

今天收到CSDN官方的来信&#xff0c;创作三周纪念日到了。 Dear: Hann Yang &#xff0c;有幸再次遇见你&#xff1a; 还记得 2020 年 12 月 12 日吗&#xff1f; 你撰写了第 1 篇技术博客&#xff1a; 《vba程序用7重循环来计算24》 在这平凡的一天&#xff0c;你赋予了它…

智能建筑市场调研:预计2028年将达到10736亿元

我国智能建筑起源于20世纪90年代&#xff0c;在我国发展了二十年&#xff0c;行业经历了初创期、规范期、发展期三个阶段&#xff0c;已经形成了产业规模及产业链&#xff0c;智能建筑工程已经普及到了各种类型建筑并延伸到了城市建设及相关行业。地域上&#xff0c;智能建筑由…

LeetCode(55)环形链表【链表】【简单】

目录 1.题目2.答案3.提交结果截图 链接&#xff1a; 环形链表 1.题目 给你一个链表的头节点 head &#xff0c;判断链表中是否有环。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xff0c;评…

100V降压5V芯片

高效能100V降压5V芯片&#xff1a;9V至100V输入电压范围&#xff0c;适用于各类应用 在当今的电子设备中&#xff0c;电源管理起着至关重要的作用。一款高效、稳定、可靠的电源芯片&#xff0c;是保证设备正常运行的关键。今天&#xff0c;我们为大家介绍一款性能卓越的100V降…