基于YOLOv8深度学习的西红柿成熟度检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:西红柿成熟度检测系统具有重要的农业应用价值。利用YOLOv8等深度学习模型,该系统能够准确地识别并评估西红柿的成熟度,对于农民和果蔬产业具有关键的意义。本文基于YOLOv8深度学习框架,训练了一个进行西红柿成熟度的目标检测模型。并基于此模型开发了一款带UI界面的西红柿成熟度检测系统,可用于实时检测场景中的西红柿成熟度检测,更方便进行功能的展示。该系统是基于pythonPyQT5技术开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
    • (4)保存图片与视频检测结果
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3. 训练结果评估
    • 4. 检测结果识别
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

西红柿成熟度检测系统具有重要的农业应用价值。利用YOLOv8等深度学习模型,该系统能够准确地识别并评估西红柿的成熟度,对于农民和果蔬产业具有关键的意义。

首先,西红柿成熟度检测对于果农来说是非常重要的。通过该系统,农民可以及时了解西红柿的成熟程度,有助于确定采摘的最佳时间,避免采摘过早或过晚造成的产量和质量损失,从而提高生产效益。
其次,这一技术也有助于果蔬生产加工行业。在果蔬加工和销售环节中,成熟度检测可以帮助生产商和商家准确评估产品成熟度,从而提供更好的质量控制和保障,改善产品的市场竞争力。
此外,西红柿成熟度检测系统还具有广泛的科研应用。通过对大量西红柿成熟度数据的收集和分析,可以帮助科研人员深入了解西红柿成熟规律,推动相关科研领域的发展,促进农业生产的可持续发展。
综上所述,西红柿成熟度检测系统对于果农、果蔬加工行业和科研领域都具有重要意义。其在农业生产的成本和效益、产品质量控制和科研推动等方面都能发挥重要作用。因此,这一技术的应用将对现代农业和果蔬产业的发展带来积极的促进作用。

博主通过搜集西红柿是否成熟的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的西红柿成熟度检测系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行西红柿成熟未成熟这2种状态的目标检测;
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置目标总数置信度用时等信息;
4. 支持图片或者视频检测结果保存

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。
单个图片检测操作如下:
在这里插入图片描述

批量图片检测操作如下:
在这里插入图片描述

(2)视频检测演示

点击视频图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
在这里插入图片描述

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头,可以实时进行检测,再次点击摄像头图标,可关闭摄像头。
在这里插入图片描述

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。
在这里插入图片描述

在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

通过网络上搜集关于火焰及烟雾的各类图片,并使用LabelMe标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含288张图片,其中训练集包含230张图片验证集包含58张图片,部分图像及标注如下图所示。
在这里插入图片描述
在这里插入图片描述

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将跌倒检测的图片分为训练集与验证集放入TomatoData目录下。
在这里插入图片描述

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\TomatoDetection\datasets\TomatoData\train
val: E:\MyCVProgram\TomatoDetection\datasets\TomatoData\valnc: 2
names: ['Riped', 'UnRiped']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

# 加载模型
model = YOLO("yolov8n.pt")  # 加载预训练模型
# Use the model
if __name__ == '__main__':# Use the modelresults = model.train(data='datasets/TomatoData/data.yaml', epochs=250, batch=4)  # 训练模型# 将模型转为onnx格式# success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
本文训练结果如下:
在这里插入图片描述

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型两类目标检测的mAP@0.5平均值为0.78,结果还是很不错的。
在这里插入图片描述

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/Riped tomato_8.jpeg"# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)# 检测图片
results = model(img_path)
res = results[0].plot()
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款西红柿成熟度检测系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【软件】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,回复【软件】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的西红柿成熟度检测系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/216928.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【docker】镜像使用(Nginx 示例)

查看本地镜像列表 docker images删除本地镜像 # docker rmi [容器 ID]docker rmi a6bd71f48f68 查找镜像 docker search nginx 参数介绍 NAME: 镜像仓库源的名称DESCRIPTION: 镜像的描述OFFICIAL: 是否 docker 官方发布STARS: 点赞、喜欢AUTOMATED: 自动构建。 拉去镜像 …

Ubuntu宝塔面板本地部署Emlog个人博客网站并远程访问【内网穿透】

文章目录 前言1. 网站搭建1.1 Emolog网页下载和安装1.2 网页测试1.3 cpolar的安装和注册 2. 本地网页发布2.1 Cpolar临时数据隧道2.2.Cpolar稳定隧道(云端设置)2.3.Cpolar稳定隧道(本地设置) 3. 公网访问测试总结 前言 博客作为使…

Centos7防火墙及端口开启

1、防火墙 1.1、查看防火墙是否开启 systemctl status firewalld 1.2、开启防火墙 firewall-cmd --list-ports 1.3、重启防火墙 firewall-cmd --reload 2、端口 2.1、查看所有已开启的端口号 firewall-cmd --list-ports 2.2、手动开启端口 启动防火墙后,默认没有开…

保姆级 | XSS Platform环境搭建

0x00 前言 XSS Platform 平台主要是用作验证跨站脚本攻击。该平台可以部署在本地或服务器环境中。我们可以使用 XSS Platfrom 平台搭建、学习或验证各种类型的 XSS 漏洞。 0x01 环境说明 HECS(云耀云服务器)xss platformUbuntu 22.04Nginx 1.24.0MySQL 5.6.51Pure-Ftpd 1.0.49…

Java实现机考程序界面

机考界面如下(单选题),上方是题目状态,下方是题目,1/5/1是已做题目数量、总共题目数量和答对题目数量。 再看一下多选题的界面。 判断题的界面。 回答正确时的反馈,会给出用时。 回答错误时的反馈&#xff…

飞天使-linux操作的一些技巧与知识点4-ansible常用的技巧,配置等

文章目录 ansible配置文件的优先级尝试开始进行操作ansible常用模块ansible 的playbook示例安装phpplaybook中变量的引用 ansible yum install -y ansible 测试是否可用 ansible localhost -m ping /etc/ansible/ansible.cfg :主配置文件,配置 ansible…

LeetCode 每日一题 Day 12 (Hard)|| 二维前缀和二维差分

2132. 用邮票贴满网格图 给你一个m x n的二进制矩阵 grid ,每个格子要么为 0 (空)要么为 1 (被占据)。 给你邮票的尺寸为 stampHeight x stampWidth 。我们想将邮票贴进二进制矩阵中,且满足以下 限制 和 …

如何避免重要文件夹被盗?多种文件夹防盗方法介绍

当我们将重要数据存放在文件夹中时,一定要保护文件夹的安全,避免文件夹被盗。那么,我们该如何避免重要文件夹被盗呢?下面我们就来了解一下。 EFS功能 EFS是Windows提供的数据加密功能,可以加密NTFS卷上的文件和文件夹…

verilog基本语法-case语句-译码电路,编码电路,选择器电路

概述: 本节主要讲解LUT构造的组合逻辑电路中的译码电路,编码电路,选择器电路。这些基本电路是使用的最广泛的电路,但是一般情况下很容易忽略这些电路。其中译码电路是构成RAM中写地址的电路,而选择电路是构成RAM中数据…

java 家教管理系统Myeclipse开发mysql数据库web结构jsp编程计算机网页项目

一、源码特点 java 家教管理系统是一套完善的java web信息管理系统,对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为 TOMCAT7.0,Myeclipse8.5开发,数据库为Mysql5.0&…

代码随想录刷题题Day13

刷题的第十三天,希望自己能够不断坚持下去,迎来蜕变。😀😀😀 刷题语言:C Day13 任务 ● 104.二叉树的最大深度 559.n叉树的最大深度 ● 111.二叉树的最小深度 ● 222.完全二叉树的节点个数 1 二叉树的最大…

Linux centos7 添加自定义服务(frps服务)

文中以frps为例创建frp服务端的服务 1、创建服务文件 vi /etc/systemd/system/frps.service 注意:文件名frps就是服务名称 2、编辑服务文件内容 [Unit] # 服务名称,可自定义 Description frp server After network.target syslog.target Wants n…

开发者必备21个Python工具

Python作为一门流行的编程语言,拥有着庞大的生态系统和丰富的工具库,为开发者们提供了无限可能。在这篇文章中,我们将介绍21个开发者必备的Python工具,涵盖了开发、调试、测试、性能优化和部署等多个方面。 Python开发工具 Jupyt…

信创认可!沃趣国产数据库云入选“2023 年浙江省信息技术应用创新典型案例”

12月6日,浙江省经信厅公示了2023 年浙江省信息技术应用创新典型案例入围名单,经过征集申报、资格初审、专家评审等环节,遴选出24个优秀典型解决方案,杭州沃趣科技以“基于云原生多类型国产数据库私有云解决方案”成功入选。 浙江省…

【ARM Trace32(劳特巴赫) 使用介绍 14 -- Go.direct 介绍】

请阅读【Trace32 ARM 专栏导读】 文章目录 Trace32 Go.directGo配合程序断点使用Go 配合读写断点使用Go 快速回到上一层函数 System.Mode Go Trace32 Go.direct TRACE32调试过程中,会经常对芯片/内核进行控制,比如全速运行、暂停、单步等等。这篇文章先…

基于hadoop下的spark安装

目录 简介 安装准备 spark安装 配置文件配置 简介 Spark主要⽤于⼤数据的并⾏计算,⽽Hadoop在企业主要⽤于⼤数据的存储(⽐如HDFS、Hive和HBase 等),以及资源调度(Yarn)。但是也有很多公司也在使⽤MR2进…

数据寻址方式

目录 一. 直接寻址二. 间接寻址三. 寄存器寻址四. 寄存器间接寻址五. 隐含寻址六. 立即寻址 \quad 数据寻址, 确定本条指令的地址码指明的真实地址 \quad 假设(下面围绕这个假设展开) \quad 一. 直接寻址 \quad 假设A的位数为16bit 那么寻址范围就是 0 ~ 216-1 \quad 二. 间接…

2023.12.14 hive sql的聚合增强函数 grouping set

目录 1.建库建表 2.需求 3.使用union all来完成需求 4.聚合函数增强 grouping set 5.聚合增强函数cube ,rollup 6.rollup翻滚 7.聚合函数增强 -- grouping判断 1.建库建表 -- 建库 create database if not exists test; use test; -- 建表 create table test.t_cookie(month …

深入浅出讲解半桥栅极驱动器IC FAN7382MX

FAN7382MX是单片高端栅极驱动器IC,可以驱动最高在 600V 下运行的 MOSFET 和 IGBT。安森美的高电压工艺和共模干扰抑制技术提供了高压侧驱动器在高 dv/dt 干扰情况下的稳定运行。先进的电平转换电路可针对 VBS 15V 允许最高 VS -9.8 V(典型值)的高压侧门…

论文阅读《Domain Generalized Stereo Matching via Hierarchical Visual Transformation》

论文地址:https://openaccess.thecvf.com/content/CVPR2023/html/Chang_Domain_Generalized_Stereo_Matching_via_Hierarchical_Visual_Transformation_CVPR_2023_paper.html 概述 立体匹配模型是近年来的研究热点。但是,现有的方法过分依赖特定数据集上…