12.4~12.14概率论复习与相应理解(学习、复习、备考概率论,这一篇就够了)

未分配的题目 

490fe698dd1249529a3d350f435d20b4.jpg

0c11e31a2f26465399fe4f53a6606da5.jpg

6b427212b31b43a385bb45f9cb4b26c1.jpg

bc605ecff4934f6482d2d5c7110edd97.jpg

d7a022af2c554cf3988a9a7115fd5121.jpg

5de4e8c534fc4755b08ca0cfdc426ad7.jpg

5ca7ade3436046c3aa3ad6bc2943a8cf.jpg

58d883686c4347968d00ae045e8c2bcf.jpg

5c7575b2edcd4b8cb2e8d69f16697e2e.jpg

e107f905908642e6b02bbb49bd714edd.jpg

048e4f744469414b875de1fa5412185d.jpg

a8b6c4a6a5b14c3fa263caf1c652ecfb.jpg

d517ad4e2dbb453b838b99a35d2dd6ae.jpg

5b8df31e7e02440a913bf7961a5ec174.jpg

fa831db3019d4e24a3a24277e4d555e5.jpg

 

概率计算(一些转换公式与全概率公式)与实际概率 ,贝叶斯

一些转换公式

相关性质计算 

常规,公式的COV与P

复习相关公式

计算出新表达式的均值,方差,再套正态分布的公式

COV的运算性质

如果两变量独立,那么EXY=EXEY

算COVXY,就是EXY-EXEY

E(X[X]),对于带绝对值的均值,直接进行积分,利用积分的对称关系求解

期望表达式中的式子,就是每个点对应的函数式的值。

 

面积为ΠR^2,派为常数,所以面积的期望取决于X^2的期望,方差取决于X^2的方差

COV(S,C)最终可化简为COV(R,R^2)=E(R*R^2)-E(R)E(R^2)

X^2的方差,计算一下X^4的积分,一共要算X^3,X^4两个积分

对于此类型的X,Y变化,满足变化后的量,均值为0,方差为1

奇怪,不规则的COV,P

一般就是离散的二维变量X,Y。核心就是依据题目特点,写出X,Y的离散分布表,然后就计算,EXY,EX,EY,EX^2,EY^2,DX,DY等关键数据

即主要是考分布律的求解

联合分布律,直接联合各变量可能出现的所有离散值列表,然后分别计算格子上各种情况的概率,就变得一目了然了

直接依照各变量可能取值列表,然后明确每个格子所代表的实际含义,再进行概率计算即可

标准差等的均值,方差性质

样本均值就是分布均值,与取样数量N无关;样本方差为分布方差除以N。

样本均值的均值是分布均值。

样本方差

样本均值为X拔,样本均值的均值就是总体均值;

样本均值的方差是总体方差除以N

样本方差为S的平方,样本方差的均值等于总体的方差

区分样本均值的方差与样本方差

还需要区分的是,样本均值与样本,即X拔与X,X与μ,X拔与μ

另外,对于样本方差的方差,考虑构建卡方分布

即样本方差为N-1,除以总体方差后,可以转为N-1的卡方分布,然后样本方差的方差,可以转化为卡方分布的方差,卡方分布的方差为二倍的自由度

两种方法,一种是转为自由度为1的卡方分布,然后注意卡方分布的方差为2^N,均值为N;一种是利用方差的定义,即样本减去均值的差的均值,满足这个式子,所以就是在问样本方差,为原样本方差除以取样数量

还有一种思路是,涉及均值,绝对值等要素组合在一起时,考虑直接积分,利用正态分布的对称性进行求解。

ES^2=DX,E(X拔^2)=D(X拔)+E(X拔)^2,

D(X拔)=1/nDX,E(X拔)=EX

常见分布

正态分布公式背写,

常见分布缩写,P是泊松,E是指数,G是几何分布

常见分布的期望与方差,泊松的期望就是朗姆达,方差?

指数的期望是1/朗姆达,方差为1/朗姆达的平方。(理解为,指数分布的含义为等待时间,参数朗姆达的含义为发生次数,即频率,所以平均等待时间为频率事件间的间隔,1/朗姆达)

几何分布?在指数分布的基础上,就只是方差还要再多乘一个1-p,即1-参数

二项分布为期望为np,方差为np(1-p)

对于后一项的处理方式,为直接积分,即回归期望的定义。

对于期望式中难以处理的部分,如绝对值以及其他不能转换的部分,可以考虑直接通过期望定义来进行积分计算

第一空,就是直接离散化计算概率,不用考虑卷积公式。第二问就是直接展开,利用独立分布时,EXY=EXEY进行计算

此题需要注意,平均就诊时间是参数的倒数,参数的含义 是一定时间内事件发生的次数、频率,所以间隔时间是参数的倒数

密度:朗姆达E^-朗姆达,分布:1-E^-朗姆达

总点击次数为4,类似前题,直接离散化穷举计算即可

两个都服从泊松分布,第一个参数为3,第二个参数为2。用卷积公式,这两个是独立的,然后有一个联合密度函数,就在那个联合密度函数上进行卷积公式。也不用卷积公式,直接离散化的穷举计算即可

满足指数分布,可以直到各自的均值与方差,然后由相关系数知道均方差,均方差=EXY-EXEY,就求出EXY

指数分布的均值为参数的倒数,方差为参数倒数的平方,也是均值的平方

泊松分布的均值为参数,方差也为参数

几何分布的均值为参数的倒数,方差为参数倒数的平方基础上再乘个Q

基于标准正态分布间的转化 

卡方分布是直接相加

T分布是分子为一个标准正态,卡方为分布除以其自由度后开根号 。T的自由度就是分母卡方的自由度

F分布分子分母均为卡方除以其自由度后开根号

样本方差除以方差可以转化为卡方分布

从而,样本方差在分子上时,可为卡方分布;在分母上是,为标准差的形式,则为除以自由度后开根号,即T分布。分子分母都有样本方差,考虑F分布

即出现样本方差,就需要考虑到卡方分布,T分布,F分布

X与Y独立,且都为标准正态分布,那么平方加和为自由度为2的卡方分布,找分位点即可

相同原理可以应用于炮弹落点为(X,Y),且X,Y独立满足标准正态分布,那么落地到原点的距离Z满足Z^2=X^2+Y^2,即Z^2服从自由度为2的卡方分布

第一空直接运算,就是自由度为6的卡方分布

DS^2,考虑构造卡方分布,(N-1)S^2/方差为自由度为N-1的卡方分布,然后卡方分布的方差为两倍的自由度,即可得;第二空,为自由度为N-1的T分布,T分布的均值为0,方差为N/N-2;第三空为自由度为1的卡方分布

第一空为自由度为N的卡方分布;第二空为F分布,分子自由度为N,分母为M

注意分母的i是从3开始1,而不是从1开始的,还有就是T分布与F分布一定要注意除以各自的自由度

注意第一个空,为样本均值,减完后,其分布满足均值为0,因为样本均值的均值等于总体均值

但要注意它的方差,样本均值不是一个常量,而是一个变量,如果为常量,如总体均值,那么这个分布的方差不会变;但是为样本均值,它的方差为总体方差除以n,但是依然不能直接运算,因为X1与样本均值不独立,应把其拆为独立的部分后再进行运算

对于第二问,涉及到样本均值,就一定会有样本方差,考虑自由度减1;不可用第一问的结论,因为这N个分布并不相互独立,而卡方分布必须满足相加的各几个分布相独立

统计量的性质

无偏估计

若为无偏估计,那么统计量的均值为数值期望

三个想法;第一是直接拆开,然后进行运算;第二是构建辅助分布,然后利用卡方分布;第三同样是辅助分布,但是是利用EX^2转方差的性质。

这里需要注意是可以成功构建一个卡方分布的,因为两两样本间的差值是相互独立的,但是需要注意上例中,涉及到样本均值就无法建立卡方分布,因为样本均值并非与每个样本独立。

置信区间的计算

对于总体均值的置信区间,若总体方差已知,就构建正态分布

若总体方差未知,就构建T分布

对于总体方差的置信区间,无论总体均值是否已知,都构建卡方分布来进行求解,

若总体均值已知,那么分子上的X-均值,就是一个一个算

若总体均值未知,那么分子上的X-均值,就不能一个一个算,因为此时总体均值不知道,那么就是通过样本方差来解决这一问题,即N-1乘以样本方差,等于那个,不过是自由度减一,而且每项减的是样本均值而不是总体均值

在总体方差估计区间中,需注意卡方分布是不对称的,也就是要查两次表,左右都是二分之α的水平

对总体方差估计,总体均值未知,采用N-1的卡方分布,问有无增大,所以检验假设为方差<=70,统计量应分布于左侧,拒绝域为右侧,右侧占0。05

对方差估计,均值未知,考虑自由度为N-1的卡方分布,即(N-1)样本方差除以估计方差,左右两侧为α/2的水平

对总体均值估计,方差已知,采用标准正态,注意假设为均值小于等于32,然后统计量水平为单侧(左侧),拒绝域在右侧

对总体均值的估计,总体方差不知,用自由度-1的T分布,左右为二分之α,即0.025

对总体均值估计,总体方差未知,采用自由度N-1的T分布,置信度95%,分布在左右两侧

对总体方差估计,总体均值未知,采用N-1的卡方分布,分子为N-1*S^2,分母为方差,左右为α/2

问方差,方差估计,那就是卡方分布,由于均值未知,所以依据样本方差构建,样本方差乘(样本数量-1)除以总体方差,就是n-1的卡方分布,问是否明显变化,双侧估计,拒绝域就是比1-α/2小或者比α/2大

第一类第二类错误

第一类第二类错误理解

主要是第二类错误的计算

第一类错误是说原假设为真,然后放弃原假设,即弃真错误;第二类错误是说原假设为假,接受原假设。一般思路为固定犯第一类错误的概率,然后缩小第二类错误的概率。

犯第一类错误的概率就是α,固定后,就可以确定拒绝域边界的情况。

犯第二类错误,原假设为假,依然接受,那么就是依据第一类错误固定下的边界C,可以表达出相应量在的一个区间里(即不在拒绝域内),然后可以计算在实际分布条件下分布在这个区间里的概率

就是说,拒绝域的边界值,和第一类错误的概率,α水平息息相关,互为决定。

变量间转换,概率计算题

 求积分公式

涉及一维与二维

考虑平方的转化

卷积公式计算

证明题

似然估计练练

理解

 密度函数与分布函数的理解

有一个函数,它可以取很多值,如果取每个值的概率都一样,那就是分布均匀的,是均匀函数,如果分布不均匀,就不是均匀函数分布;每个值在函数取值出现的概率就是密度函数,均匀时都一样;不均匀时根据出现的值,有其对应的出现概率。

分布函数可以理解为,分布函数这个值,然后函数取值的点落在这个值划定的左区间内的概率(或者可以说是占比)

从这个角度,密度函数的自变量取值范围,就是对应会出现的值,然后这个值通过密度函数会得到其出现的概率;而分布函数就是立一个区间右端点,然后问自变量(可能出现的值)取值在这个区间里的概率。

二维变量密度函数,卷积公式理解

卷积公式就是,原来两个变量x,y,然后有一个z综合了2个变量的信息,通过卷积公式就是把其中一个变量视为常数,然后用z去替换掉剩下的那个变量,利用的方式就是一维的函数替换,求反函数,然后乘一个求导(注意另一个变量在此时表现为常数),之后就得到了把其中一个变量替换后的x,z联合分布(以替换y为例),然后再对每个z收缩其所有的x,即可求得z的单独密度函数。

即替掉哪个变量(计为Y)时,就求Y与Z的关系式(Y为因变量),把X视为常数,然后在函数里踢掉Y为Z,然后乘一个YZ关系式中对Z求导的结果(可能涉及到X,求导时其视为常数),最后就收缩所有的X得到Z的式子。

第一步是要得到联合密度函数,就是把不同变量X,Y的取值综合在一起的一个密度联式

在一维当中,Y与X满足一个关系式(Y为因变量),X已知分布函数,那么转换求反函数,得到X为因变量的与Y的关系式,然后这个表达式对Y求导,取绝对值,把X当中的换掉为Y,就是Y的分布函数

对于泊松分布与指数分布的区分

泊松分布与指数分布共用一个参数,就是朗姆达,这个参数的含义就是一定时间内事件发生的次数,频率,是次数、频率。

相应的,等待时间,寿命,就是频率的倒数。

要根据实际意义确定真正的朗姆达

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/217792.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

科研论文中PPT图片格式选择与转换:EPS、SVG 和 PDF 的比较

当涉及论文中的图片格式时&#xff0c;导师可能要求使用 EPS 格式的图片。EPS&#xff08;Encapsulated PostScript&#xff09;是一种矢量图格式&#xff0c;它以 PostScript 语言描述图像&#xff0c;能够无损地缩放并保持图像清晰度。与像素图像格式&#xff08;如 PNG 和 J…

HCIA-H12-811题目解析(3)

1、【单选题】 以下关于路由器的描述&#xff0c;说法错误的是&#xff1f; 2、【单选题】某网络工程师在输入命令行时提示如下信息&#xff1a;Error:Unrecognized command foun at position.对于该提示信息说法正确的是&#xff1f; 3、【单选题】如下图所示的网络&#xf…

C语言之⽂件操作

一为啥需要文件&#xff1f; 如果没有⽂件&#xff0c;我们写的程序的数据是存储在电脑的内存中&#xff0c;如果程序退出&#xff0c;内存回收&#xff0c;数据就丢失了&#xff0c;等再次运⾏程序&#xff0c;是看不到上次程序的数据的&#xff0c;如果要将数据进⾏持久化的保…

机器学习-聚类问题

前言 聚类算法又叫做”无监督分类“&#xff0c;目标是通过对无标记训练样本来揭示数据的内在性质及 规律&#xff0c;为进一步的数据分析提供基础。 Kmeans 作为聚类算法的典型代表&#xff0c;Kmeans可以说是最简单的聚类算法&#xff0c;没有之一&#xff0c;那她是怎么完…

WPF使用WebBrowser报脚本错误问题处理

前言 WPF使用WebBrowser报脚本错误问题处理,我们都知道WPF自带的WebBrowser都用的IE内核,但是在特殊的条件下我们还需要用到它,比如展示纯html简单的页面。再展示主流页面的时候比如用到Jquery高级库或者VUE等当前主流站点时经常就会报JS脚本错误,在Winform里面我们一句代…

HTML如何使用图片链接

文章目录 图片链接的使用常见图片类型PNGJPGGIFBMP 图片链接的使用 在 HTML 中&#xff0c;图像由 标签定义。 是空标签&#xff0c;意思是说&#xff0c;它只包含属性&#xff0c;并且没有闭合标签。 语法&#xff1a; <img src”图片路径" title“鼠标悬浮在图片上…

UE4 UMG 颜色字体和PS对应关系

与PS中对应的是Hex sRGB色号 但是PS中采用的16进制色号为6位 UE4中的为8位 UMG制作时默认dpi为96像素/英寸&#xff0c;psd默认dpi是72像素/英寸。 在GUI设计时将dpi设为96&#xff0c;或者将72dpi下字体的字号乘以0.75&#xff0c;都能还原效果图中的效果。

C语言—每日选择题—Day47

第一题 1. 以下逗号表达式的值为&#xff08;&#xff09; (x 4 * 5, x * 5), x 25 A&#xff1a;25 B&#xff1a;20 C&#xff1a;100 D&#xff1a;45 答案及解析 D 本题考查的就是逗号表达式&#xff0c;逗号表达式是依次计算每个表达式&#xff0c;但是只输出最后一个表…

Java架构师-数据机构与算法实战(第一篇)

数学知识回顾 指数 指数函数是重要的基本初等函数之一。一般地&#xff0c;ya^x函数(a为常数且以a>0&#xff0c;a≠1)叫做指数函数&#xff0c;函数的定义域是 R 。注意&#xff0c;在指数函数的定义表达式中&#xff0c;在a^x前的系数必须是数1&#xff0c;自变量x必须在…

【STM32】电机驱动

一、电机分类 二、直流电机的分类 1.有刷电机 2.无刷电机 3.直流减速电机 三、H桥电路 正向旋转 驱动Q1和Q4 反向旋转 驱动Q2和Q3 四、MC3386电机驱动芯片 1.基本原理图 1&#xff09;前进/后退&#xff1a;IN1和IN2的电平顺序决定电机的正反转 2&#xff09;调节速度&#…

【Spring】03 容器

文章目录 1. 定义2. BeanFactory1&#xff09;惰性加载2&#xff09;基本的容器功能3&#xff09;XML配置 3. ApplicationContext1&#xff09;主动加载2&#xff09;AOP支持3&#xff09;事件发布与监听4&#xff09;国际化支持5&#xff09;注解支持 4. Spring容器的生命周期…

严世芸龟法养生经

文章目录 严世芸理念荤素搭配&#xff0c;不偏嗜动静结合心平气和 龟息法 严世芸 严世芸&#xff0c;出生于1940年&#xff0c;现任上海中医药大学的主任医师&#xff0c;教授。他父亲是近代上海有名的中医&#xff0c;他又是著名医家张伯臾的亲传弟子。 从小就在父亲诊室里长…

Navicat 技术指引 | 适用于 GaussDB 分布式的日志查询与配置设置

Navicat Premium&#xff08;16.3.3 Windows 版或以上&#xff09;正式支持 GaussDB 分布式数据库。GaussDB 分布式模式更适合对系统可用性和数据处理能力要求较高的场景。Navicat 工具不仅提供可视化数据查看和编辑功能&#xff0c;还提供强大的高阶功能&#xff08;如模型、结…

phpy 连接 PHP与Python生态 跨界合作 PHPY搭建 已解决

目录 需求介绍 安装 windows版本 文件地址 运行效果 需求介绍 在日常功能开发中&#xff0c;难免会使用python的计算库&#xff0c;同时自己要是一名PHP开发工程师。就在最近有相应的需求&#xff0c;索性使用phpy来进行功能开发 安装 windows版本 phpy 是识沃团队最新推出…

【设计模式--结构型--桥接模式】

设计模式--结构型--桥接模式 桥接&#xff08;Bridge&#xff09;模式定义结构案例好处使用场景 桥接&#xff08;Bridge&#xff09;模式 定义 将抽象与实现分离&#xff0c;使他们可以独立变化。它是用组合关系代替继承关系来实现&#xff0c;从而降低了抽象和实现这两个维…

红帽认证RHCE9.0版本2023年12月的红帽9.0版本RHCSA题⽬+答案,本人已过,全国通用

红帽认证9版本2023年12月的红帽9.0版本RHCSA题⽬答案&#xff0c;本人已过&#xff0c;全国通用 需要完整的RHCSA和RHCE的考试答案的题目以及RHCE9考试的模拟环境和考试笔记教材的请添加微信&#xff0c;需备注来自csdn&#xff0c;不然通不过 1、配置⽹络设置? 将?node1?…

docker-harbor的私有仓库

目录 harbor的特性 harbor的组件 docker-harbor部署 Docker1 页面访问 ​编辑 上传镜像 创建项目 创建用户 给项目创建成员 上传私有仓库 docker2(远程主机上传) 如何实现仓库之间进行同步 docker3 实现远程仓库同步 仓库 保存镜像 私有&#xff0c;自定义用户…

音视频技术开发周刊 | 323

每周一期&#xff0c;纵览音视频技术领域的干货。 新闻投稿&#xff1a;contributelivevideostack.com。 Meta牵头组建开源「AI复仇者联盟」&#xff0c;AMD等盟友800亿美元力战OpenAI英伟达 超过50家科技大厂名校和机构&#xff0c;共同成立了全新的人工智能联盟。以开源为旗号…

C之不小心就犯错误1

以为会打印&#xff1a; it is ok 然而并不是&#xff1a; 原因&#xff1a; 根据C语言隐式类型转换的原理&#xff0c;如果是int型与uint型进行比较&#xff08;其它类型同理&#xff09;&#xff0c;则会将int型数据转换为uint型&#xff0c;则-1变成了 2^32-1 429496729…

qt-C++笔记之addAction和addMenu的区别以及QAction的使用场景

qt-C笔记之addAction和addMenu的区别以及QAction的使用场景 code review! 文章目录 qt-C笔记之addAction和addMenu的区别以及QAction的使用场景1.QMenu和QMenuBar的关系与区别2.addMenu和addAction的使用场景区别3.将QAction的信号连接到槽函数4.QAction的使用场景5.将例1修改…