Pytorch从零开始实战13

Pytorch从零开始实战——ResNet与DenseNet探索

本系列来源于365天深度学习训练营

原作者K同学

文章目录

  • Pytorch从零开始实战——ResNet与DenseNet探索
    • 环境准备
    • 数据集
    • 模型选择
    • 开始训练
    • 可视化
    • 总结

环境准备

本文基于Jupyter notebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论基础。本次实验的目的是探索ResNet和DenseNet结合。
第一步,导入常用包

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn.functional as F
import random
from time import time
import numpy as np
import pandas as pd
import datetime
import gc
import os
import copy
import warnings
os.environ['KMP_DUPLICATE_LIB_OK']='True'  # 用于避免jupyter环境突然关闭
torch.backends.cudnn.benchmark=True  # 用于加速GPU运算的代码

设置随机数种子

torch.manual_seed(428)
torch.cuda.manual_seed(428)
torch.cuda.manual_seed_all(428)
random.seed(428)
np.random.seed(428)

检查设备对象

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device, torch.cuda.device_count() # # (device(type='cuda'), 2)

数据集

本次数据集是使用鸟的图片,分别有四种类别的鸟,根据鸟的类别名称存放在不同的文件夹中。
使用pathlib查看类别

import pathlib
data_dir = './data/bird_photos/'
data_dir = pathlib.Path(data_dir) # 转成pathlib.Path对象
data_paths = list(data_dir.glob('*')) 
classNames = [str(path).split("/")[2] for path in data_paths]
classNames # ['Black Throated Bushtiti', 'Cockatoo', 'Black Skimmer', 'Bananaquit']

使用transforms对数据集进行统一处理,并且根据文件夹名映射对应标签

all_transforms = transforms.Compose([transforms.Resize([224, 224]),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 标准化
])total_data = datasets.ImageFolder("./data/bird_photos/", transform=all_transforms)
total_data.class_to_idx# {'Bananaquit': 0,# 'Black Skimmer': 1,# 'Black Throated Bushtiti': 2,# 'Cockatoo': 3}

随机查看5张图片

def plotsample(data):fig, axs = plt.subplots(1, 5, figsize=(10, 10)) #建立子图for i in range(5):num = random.randint(0, len(data) - 1) #首先选取随机数,随机选取五次#抽取数据中对应的图像对象,make_grid函数可将任意格式的图像的通道数升为3,而不改变图像原始的数据#而展示图像用的imshow函数最常见的输入格式也是3通道npimg = torchvision.utils.make_grid(data[num][0]).numpy()nplabel = data[num][1] #提取标签 #将图像由(3, weight, height)转化为(weight, height, 3),并放入imshow函数中读取axs[i].imshow(np.transpose(npimg, (1, 2, 0))) axs[i].set_title(nplabel) #给每个子图加上标签axs[i].axis("off") #消除每个子图的坐标轴plotsample(total_data)

在这里插入图片描述
根据8比2划分数据集和测试集,并且利用DataLoader划分批次和随机打乱

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_ds, test_ds = torch.utils.data.random_split(total_data, [train_size, test_size])batch_size = 32
train_dl = torch.utils.data.DataLoader(train_ds,batch_size=batch_size,shuffle=True,)
test_dl = torch.utils.data.DataLoader(test_ds,batch_size=batch_size,shuffle=True,)len(train_dl.dataset), len(test_dl.dataset) # (452, 113)

模型选择

本次模型采用模型集成,也就是说将一个输入特征分别送到两个不同的模型中去学习,到最后将输出特征融合后进行分类,每个模型可能对数据集的不同方面有更强的学习能力,因此通过集成,可以期望获得更全面、更强大的特征表示。
具体而言,本次实验使用了一个 DenseNet 和一个 ResNet,它们在网络结构和特征提取方面有所不同。DenseNet 使用密集连接的结构,充分利用了每一层的特征,而 ResNet 使用残差连接,有助于解决梯度消失问题,使得网络更易训练。

先建立ResNet模型,首先实现Block块,首先进行预激活层,包括标准化和ReLu激活函数,接着进行shortcut操作,如果conv_shortcut为True,会使用一个1x1卷积层进行变换,否则,如果stride为1,则进行恒等映射,否则使用1x1的最大池化。随后经过三个卷积层。在forward方法中,输入 x 经过预激活层,然后进行三个卷积操作,最后将shortcut和经过卷积的结果相加。这种结构使得梯度更容易反向传播,从而有助于训练深层网络。

class Block2(nn.Module):def __init__(self, in_channels, filters, kernel_size=3, stride=1, conv_shortcut=False):super(Block2, self).__init__()self.preact = nn.Sequential(nn.BatchNorm2d(in_channels),nn.ReLU())if conv_shortcut:self.shortcut = nn.Conv2d(in_channels, 4 * filters, kernel_size=1, stride=stride)else:if stride == 1:self.shortcut = nn.Identity()else: self.shortcut = nn.MaxPool2d(1, stride=stride)self.conv1 = nn.Sequential(nn.Conv2d(in_channels, filters, kernel_size=1, stride=1, bias=False),nn.BatchNorm2d(filters),nn.ReLU())self.conv2 = nn.Sequential(nn.ZeroPad2d(padding=(1, 1, 1, 1)),nn.Conv2d(filters, filters, kernel_size=kernel_size, stride=stride, bias=False),nn.BatchNorm2d(filters),nn.ReLU())self.conv3 = nn.Conv2d(filters, 4 * filters, kernel_size=1)def forward(self, x):preact = self.preact(x)shortcut = self.shortcut(preact)x = self.conv1(preact)x = self.conv2(x)x = self.conv3(x)out = shortcut + xreturn out

下面实现堆叠块,通过传入不同的参数去调用Block块,其中[Block2(4 * filters, filters) for i in range(0, blocks)],使用 Python 中的列表解析创建了 blocks 个残差块。这些残差块的输入通道数为 4 * filters,以匹配前一个残差块的输出通道数。

class Stack2(nn.Module):def __init__(self, in_channels, filters, blocks, stride1=2):super(Stack2, self).__init__()self.blocks = nn.Sequential(Block2(in_channels, filters, conv_shortcut=True),*[Block2(4 * filters, filters) for i in range(0, blocks)],Block2(4 * filters, filters, stride=stride1))def forward(self, x):return self.blocks(x)

下面实现ResNet网络主体,去掉全连接层。

class ResNetPart(nn.Module):def __init__(self, include_top=True, preact=True, num_classes=1000):super().__init__()self.conv1 = nn.Sequential(nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),nn.BatchNorm2d(64),nn.ReLU())self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)self.conv2 = Stack2(64, 64, 3)self.conv3 = Stack2(256, 128, 4)self.conv4 = Stack2(512, 256, 6)self.conv5 = Stack2(1024, 512, 3, stride1=1)self.post = nn.Sequential(nn.BatchNorm2d(2048),nn.ReLU())self.include_top = include_topif include_top:self.avg_pool = nn.AdaptiveAvgPool2d(1)def forward(self, x):x = self.conv1(x)x = self.pool1(x)x = self.conv2(x)x = self.conv3(x)x = self.conv4(x)x = self.conv5(x)x = self.post(x)if self.include_top:x = self.avg_pool(x)x = torch.flatten(x, 1)return x

下面实现DenseNet部分。首先对DenseLayer类定义,本次实验使用add_module函数,默认是用于向类中添加一个子模块,第一个参数为模块名,第二个参数为模块实例,其实相当于加到父类的nn.Sequential里面,所以调用的时候使用super().forward(x),这段的核心是将输入 x 与新特征 t 进行通道维度上的连接,完成密集连接。

class DenseLayer(nn.Sequential):def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):super().__init__()self.add_module("norm1", nn.BatchNorm2d(num_input_features))self.add_module("relu1", nn.ReLU(inplace=True))self.add_module("conv1", nn.Conv2d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False))self.add_module("norm2", nn.BatchNorm2d(bn_size * growth_rate))self.add_module("relu2", nn.ReLU(inplace=True))self.add_module("conv2", nn.Conv2d(bn_size*growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False))self.drop_rate = drop_ratedef forward(self, x):t = super().forward(x)if self.drop_rate > 0:t = F.dropout(t, p=self.drop_rate, training=self.training)return torch.cat([x, t], 1)

下面是DenseBlock的实现,通过循环创建了多个DenseLayer。其中的 num_input_features + i * growth_rate 用于指定输入通道的数量,确保每个DenseLayer的输入通道数逐渐增加。将新创建的DenseLayer添加为 DenseBlock 的子模块。循环结束后,DenseBlock 就包含了多个DenseLayer,每个DenseLayer都具有逐渐增加的输入通道数量。

class DenseBlock(nn.Sequential):def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):super().__init__()for i in range(num_layers):layer = DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate)self.add_module("denselayer%d" % (i + 1), layer)

下面是Transition,实现过渡的功能,是在块之间降低通道数量和空间维度。

class Transition(nn.Sequential):def __init__(self, num_input_feature, num_output_features):super().__init__()self.add_module("norm", nn.BatchNorm2d(num_input_feature))self.add_module("relu", nn.ReLU(inplace=True))self.add_module("conv", nn.Conv2d(num_input_feature, num_output_features, kernel_size=1, stride=1, bias=False))self.add_module("pool", nn.AvgPool2d(2, stride=2))

实现深度学习网络主体,将不同的输出特征进行融合,完成分类。

from collections import OrderedDict
class Model(nn.Module):def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64,bn_size=4, compression_rate=0.5, drop_rate=0, num_classes=1000):super().__init__()self.features = nn.Sequential(OrderedDict([("conv0", nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),("norm0", nn.BatchNorm2d(num_init_features)),("relu0", nn.ReLU(inplace=True)),("pool0", nn.MaxPool2d(3, stride=2, padding=1))]))num_features = num_init_featuresfor i, num_layers in enumerate(block_config):block = DenseBlock(num_layers, num_features, bn_size, growth_rate, drop_rate)self.features.add_module("denseblock%d" % (i + 1), block)num_features += num_layers * growth_rateif i != len(block_config) - 1:transition = Transition(num_features, int(num_features * compression_rate))self.features.add_module("transition%d" % (i + 1), transition)num_features = int(num_features * compression_rate)self.features.add_module("norm5", nn.BatchNorm2d(num_features))self.features.add_module("relu5", nn.ReLU(inplace=True))self.classifier = nn.Linear(num_features + 2048, num_classes)for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight)elif isinstance(m, nn.BatchNorm2d):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1)elif isinstance(m, nn.Linear):nn.init.constant_(m.bias, 0)self.part = ResNetPart()def forward(self, x):t = self.part(x)features = self.features(x)out = F.avg_pool2d(features, 7, stride=1).view(features.size(0), -1)out = torch.cat([out, t], dim=1) out = self.classifier(out)return out

使用summary查看网络
在这里插入图片描述

开始训练

定义训练函数

def train(dataloader, model, loss_fn, opt):size = len(dataloader.dataset)num_batches = len(dataloader)train_acc, train_loss = 0, 0for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)opt.zero_grad()loss.backward()opt.step()train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

定义测试函数

def test(dataloader, model, loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)test_acc, test_loss = 0, 0with torch.no_grad():for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()test_loss += loss.item()test_acc /= sizetest_loss /= num_batchesreturn test_acc, test_loss

定义学习率、损失函数、优化算法

loss_fn = nn.CrossEntropyLoss()
learn_rate = 0.0002
opt = torch.optim.Adam(model.parameters(), lr=learn_rate)

开始训练,epoch设置为30

import time
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []T1 = time.time()best_acc = 0
best_model = 0for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval() # 确保模型不会进行训练操作epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)if epoch_test_acc > best_acc:best_acc = epoch_test_accbest_model = copy.deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)print("epoch:%d, train_acc:%.1f%%, train_loss:%.3f, test_acc:%.1f%%, test_loss:%.3f"% (epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))T2 = time.time()
print('程序运行时间:%s秒' % (T2 - T1))PATH = './best_model.pth'  # 保存的参数文件名
if best_model is not None:torch.save(best_model.state_dict(), PATH)print('保存最佳模型')
print("Done")

由于数据量小,所以略微有些过拟合。
在这里插入图片描述

可视化

可视化训练过程和测试过程

import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

总结

由于作者水平有限,所以本次模型之间的结合探索采用模型集成,这其中的优势有:1.每个模型通过不同的方式学习数据的表示,将它们集成可以得到更全面、更丰富的特征表示。2.不同的模型可能对数据集中的不同样本和模式有更好的泛化能力,集成可以减少过拟合的风险。这样的模型可以提供更强的鲁棒性,但一定有很多更好的结合方式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/218149.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【学习笔记】JavaScript中的GC算法

1、内存管理 内存:由可读写单元组成,标识一片可操作的空间 管理: 认为的去操作一篇空间的申请、使用和释放 内存管理:开发者主动申请空间、使用空间、释放空间 管理流程: 申请-使用-释放 // 申请 let obj {} //使…

蓝牙物联网智慧工厂解决方案

蓝牙物联网智慧工厂解决方案是一种针对工厂管理的智能化解决方案,通过蓝牙、物联网、大数据、人工智能等技术,实现工厂人员的定位、物资的定位管理、车间的智慧巡检、智慧安防以及数据的可视化等功能。 蓝牙物联网智慧工厂解决方案构成: 人员…

华为数通——企业双出口冗余

目标:默认数据全部经过移动上网,联通低带宽。 R1 [ ]ip route-static 0.0.0.0 24 12.1.1.2 目的地址 掩码 下一条 [ ]ip route-static 0.0.0.0 24 13.1.1.3 preference 65 目的地址 掩码 下一条 设置优先级为65 R…

Axios入门案例——后端学习

目录 后端准备 导入依赖 解决跨域 User实体类 DemoController测试接口 前端准备 项目结构 axios.js axios.html 开始测试 后端结果 前端结果 后端准备 导入依赖 案例会用到以下的三个依赖。 <dependency><groupId>org.springframework.boot</gro…

基于以太坊的智能合约开发Solidity(事件日志篇)

//声明版本号&#xff08;程序中的版本号要和编译器版本号一致&#xff09; pragma solidity ^0.5.17; //合约 contract EventTest {//状态变量uint public Variable;//构造函数constructor() public{Variable 100;}event ValueChanged(uint newValue); //事件声明event Log(…

Python 自动化之收发邮件(二)

发邮件之Windows进程监控 文章目录 发邮件之Windows进程监控前言一、基本内容二、基本结构三、库模块四、函数模块1.进程监控2.邮件发送 五、程序运行模块1.获取时间2.用户输入3.进程监控3.1进程启动发邮件3.2进程停止发邮件 总结 前言 上一篇简单写了一下如何进行邮件的收发操…

智能优化算法应用:基于黏菌算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于黏菌算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于黏菌算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.黏菌算法4.实验参数设定5.算法结果6.参考文献7.MA…

云原生之深入解析Kubernetes本地持久化存储方案OpenEBS LocalPV的最佳实践

一、K8s 本地存储 K8s 支持多达 20 种类型的持久化存储&#xff0c;如常见的 CephFS 、Glusterfs 等&#xff0c;不过这些大都是分布式存储&#xff0c;随着社区的发展&#xff0c;越来越多的用户期望将 K8s 集群中工作节点上挂载的数据盘利用起来&#xff0c;于是就有了 loca…

PostgreSQL向量数据插件--pgvector安装(附PostgreSQL安装)

PostgreSQL向量数据插件--pgvector安装 一、版本二、数据库安装1. 在官网下载PostgreSQL14.0的安装包2.增加用户postgres3.解压安装 三、pgvector安装1. 从github上克隆下来2. 安装pgvector插件3. 开始使用pgvector启用pgsql命令行创建扩展 本文为本人在安装pgvector中踩过的坑…

自动驾驶学习笔记(十八)——Lidar感知

#Apollo开发者# 学习课程的传送门如下&#xff0c;当您也准备学习自动驾驶时&#xff0c;可以和我一同前往&#xff1a; 《自动驾驶新人之旅》免费课程—> 传送门 《Apollo 社区开发者圆桌会》免费报名—>传送门 文章目录 前言 Lidar感知 运动补偿 点云分割 总结…

MySQL——表的约束

目录 一.表的约束 二.空属性 ​编辑三.默认值 四.列描述 五.主键 1.主键 2.符合主键 六.自增长 七.唯一键 八.外键 一.表的约束 真正约束字段的是数据类型&#xff0c;但是数据类型约束很单一&#xff0c;需要有一些额外的约束&#xff0c;更好的保证数据的合法性&…

26种主流的神经网络偏微分方程求解方法汇总

偏微分方程&#xff08;PDE&#xff09;是数学中一门重要的分支&#xff0c;应用范围广泛涉及自然科学、工程技术、生物学领域等。然而我们都知道&#xff0c;偏微分方程的求解过程异常艰难&#xff0c;如果碰上了特别复杂的&#xff0c;传统的计算方法可能需要数百万个CPU小时…

一些好用的VSCode扩展

可以在扩展这里直接搜索需要的扩展&#xff0c;点击安装即可。 1.Chinese 中文扩展&#xff0c;就是说虽然咱们懂点英语&#xff0c;但还是中文看着方便 2.Auto Rename Tag 当你重命名一个HTML 标签时&#xff0c;会自动重命名与他配对的HTML 标签 当你选择h4这个标签时&…

Docker及其使用思维导图

Docker的架构 构建分发运行镜像 Client&#xff08;客户端&#xff09;&#xff1a;是Docker的用户端&#xff0c;可以接受用户命令和配置标识&#xff0c;并与Docker daemon通信。Images&#xff08;镜像&#xff09;&#xff1a;是一个只读模板&#xff0c;含创建Docker容器…

DevEco Studio 项目鸿蒙(HarmonyOS)资源引用(自定统和系统)

DevEco Studio 项目鸿蒙&#xff08;HarmonyOS&#xff09;资源引用&#xff08;自定统和系统&#xff09; 一、操作环境 操作系统: Windows 10 专业版 IDE:DevEco Studio 3.1 SDK:HarmonyOS 3.1 二、资源访问 HarmonyOS应用资源分为两类&#xff0c;一类是应用资源&…

【数组Array】力扣-304 二维区域和检索 - 矩阵不可变

目录 题目描述 解题过程 labuladong题解 题目描述 给定一个二维矩阵 matrix&#xff0c;以下类型的多个请求&#xff1a; 计算其子矩形范围内元素的总和&#xff0c;该子矩阵的 左上角 为 (row1, col1) &#xff0c;右下角 为 (row2, col2) 。 实现 NumMatrix 类&#xf…

计算机网络:应用层(二) Web与http协议

我最近开了几个专栏&#xff0c;诚信互三&#xff01; > |||《算法专栏》&#xff1a;&#xff1a;刷题教程来自网站《代码随想录》。||| > |||《C专栏》&#xff1a;&#xff1a;记录我学习C的经历&#xff0c;看完你一定会有收获。||| > |||《Linux专栏》&#xff1…

如何连接到 Azure SQL 数据库(下)

在《如何连接到 Azure SQL 数据库&#xff08;上&#xff09;》中&#xff0c;我们已经了解到了以下内容↓↓↓ 开始之前&#xff1a;Azure 连接凭据和防火墙 如何检索 Azure 连接凭据如何配置服务器防火墙使用 SQL Server Management Studio 连接到 Azure使用 dbForge Studio…

QuickLook 万能的 Windows 预览工具

QuickLook 是一款用于 Microsoft Windows 操作系统的轻量级文件预览工具。它提供了类似于 Mac OS X 上的"快速查看"功能的体验&#xff0c;允许用户在不打开文件的情况下快速预览文件内容。我们只需要按下键盘空格键就可以预览文件&#xff0c;当预览的是 docx 等文件…

Linux第一个小程序——进度条

Linux第一个小程序——进度条 1. 前言2. 缓冲区概念3. \r && \n4. 进度条实现4.1 初级进度条4.2 升级进度条 1. 前言 在我们写这个小程序之前&#xff0c;我们要用到我们学的三个知识点 gcc的使用vim的使用make/makefile的使用 除此之外还需要一些其他的知识点&…