机器学习 | SVM支持向量机

         

        欲穷千里目,更上一层楼。

        一个空间的混乱在更高维度的空间往往意味着秩序。

        Machine-Learning: 《机器学习必修课:经典算法与Python实战》配套代码 - Gitee.com


1、核心思想及原理

         针对线性模型中分类两类点的直线如何确定。这是一个ill-posed problem。

         线性模型通过求解各点距离进行投票,可以使用sigmoid函数来求解总损失,转换成一个最优化问题。但是模型泛化能力太差,很容易受到噪声的干扰,直线可能会发生很大变化。

         所以我们更想让直线靠近中间位置。

        

        

        三个概念

        支持向量 support vector —— 距离决策边界最近的点,每个类别的极端数据点

        超平面 hyperplane —— “隔离带”中间的平分线

        间隔 margin —— 最大化margin

        

        民主集中的思想 ~

        


2、线性SVM —— 硬间隔 Hard Margin

 (假定数据本身线性可分)

        通过上一小节我们得到优化目标:

        最大化间隔margin 也就是 最大化距离 d,也就是点到超平面的垂直距离。

        注意此处的距离和线性模型中的距离不同,线性模型中的距离是 yhat-y (斜边)

        

        SVM的求解过程和线性方程一样:

                先假设一个超平面,

                这里的W和X都是高维向量,点到高维空间中的距离有现成公式可以套用:

                ||w||为w的范数,表示高维空间中长度的概念。

                

                有了这样一个距离公式,隔离带就可以表示为一个分段函数的形式。

                我们用1和-1来表示两个类别:

                

                

                现在我们给柿子两边同时除以d 变形,再继续整理做变量代换:

               

                为了方便表示,看着撇多难受,我们再用w和b换回去,

                但此时的w b和一开始推到时的w b,理论上已经不是同一个数了。

                但是存在一个比例关系。在做一个变形:

                

                则现在的问题就简化为:

                

                 这是一个不等式约束的最优化问题。梯度下降只能用于无约束的最优化。

                 ps:

                 不等式约束最优化 引入 松弛变量 到等式约束最优化。

                 等式约束最优化 引入 拉格朗日乘子 到无约束最优化。

        注意,这里的 i 是遍历所有的数据点。但在最小化范数时,我们只用到了支持向量。

        

         但是如果你相信的人也出了问题呢?


3、线性SVM —— 软间隔 Soft Margin

        软间隔要解决的问题:

                异常值 outliner      

                支持向量的选择、民主集中思想的弱点

                

        则需:建立容错机制,提升泛化能力

        那么体现在数学上:允许点越过线一点点 ~

        

        那么怎么保证 这个减去的值不能太大呢?

        

        也就是说尽量让所有数据容错值的和最小。让二者取一个平衡。

        C 就是一个新的超参数,用来调节两者的权重值。

        再看一下这个求和的形式,是不是特别像正则化?其实就可以看成正则化。

        正则化项是一次的,所以叫L1正则。这里省略了绝对值符号,因为其就是正数。

        


 4、线性SVM代码实现

数据集

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
x, y = make_blobs(n_samples=40, centers=2, random_state=0
)
plt.scatter(x[:,0], x[:,1], c = y)
plt.show()

sklearn中的线性SVM

from sklearn.svm import LinearSVC
clf = LinearSVC(C = 1)
clf.fit(x, y)

LinearSVC

LinearSVC(C=1)
clf.score(x, y)
1.0
def decision_boundary_plot(X, y, clf):axis_x1_min, axis_x1_max = X[:,0].min() - 1, X[:,0].max() + 1axis_x2_min, axis_x2_max = X[:,1].min() - 1, X[:,1].max() + 1x1, x2 = np.meshgrid( np.arange(axis_x1_min,axis_x1_max, 0.01) , np.arange(axis_x2_min,axis_x2_max, 0.01))z = clf.predict(np.c_[x1.ravel(),x2.ravel()])z = z.reshape(x1.shape)from matplotlib.colors import ListedColormapcustom_cmap = ListedColormap(['#F5B9EF','#BBFFBB','#F9F9CB'])plt.contourf(x1, x2, z, cmap=custom_cmap)plt.scatter(X[:,0], X[:,1], c=y)plt.show()
decision_boundary_plot(x, y, clf)

def plot_svm_margin(x, y, clf, ax = None):from sklearn.inspection import DecisionBoundaryDisplayDecisionBoundaryDisplay.from_estimator(clf,x,ax = ax,grid_resolution=50,plot_method="contour",colors="k",levels=[-1, 0, 1],alpha=0.5,linestyles=["--", "-", "--"],)plt.scatter(x[:,0], x[:,1], c = y)
plot_svm_margin(x, y, clf)
plt.show()

plt.rcParams["figure.figsize"] = (12, 8)params = [0.1, 1, 10, 100]
for i, c in enumerate(params):clf = LinearSVC(C = c, random_state=0)clf.fit(x, y)ax = plt.subplot(2, 2, i + 1)plt.title("C: {0}".format(c))plot_svm_margin(x, y, clf, ax)plt.show()

多分类

from sklearn import datasetsiris = datasets.load_iris()
x = iris.data
y = iris.target

注意SVM中只支持ovr ~

clf = LinearSVC(C = 0.1, multi_class='ovr', random_state=0)
clf.fit(x, y)

LinearSVC

LinearSVC(C=0.1, random_state=0)
clf.predict(x)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2,2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])


 5、非线性SVM —— 核技巧

线性不可分问题

        

         升维映射

        

        高维线性可分

        

       已经有前人在数学上证明:

        如果原始的空间是有限的,也就是说特征数是有限的,

        那么一定存在一个高位的特征空间能够分割这些样本。

        

软间隔对偶 dual 问题 

        

        则现在就要解决右边的问题。

         

        套上一个 φ 就可以升维,但是可能会导致维度灾难,所以就要使用核函数。

        【数之道26】SVM支持向量机-核技巧Kernel Trick详解(多项式核函数,无限维度高斯核函数)_哔哩哔哩_bilibili

        

常用的核函数

        

        他们就像一个武器套装,能够方便针对软间隔对偶问题实现升维操作。

 那么为什么升维就能解决不可分的问题呢?

        希尔伯特空间的元素是函数,因此可以看成无穷维度的向量。

        

 核技巧的作用

        映射到高维空间。

        大大减少了计算量,尤其是对于高维向量的相乘操作,同时也不需要额外存储中间的结果。

        不仅限于SVM,实际上 只要存在着 xi ,xj 的最优化问题。

        


 6、非线性SVM —— 核函数

        核函数:是映射关系的内积

        映射函数本身仅仅是一种映射关系,并没有增加维度的特性,不过可以利用核函数的特性,构造可以增加维度的核函数,这通常是我们希望的。

        要注意,核函数和映射没有关系。核函数只是用来计算映射到高维空间之后的内积的一种简便方法!

        一般英文文献对Kernel有两种提法,一是Kernel Function,二是Kernel Trick。从Trick一词中就可以看出,这只是一种运算技巧而已,不涉及什么高深莫测的东西。

        核技巧(kernel trick)的作用,一句话概括的话,就是降低计算的复杂度,甚至把不可能的计算变为可能。

多项式核函数

         

        以下将说明,为什么这个核函数相当于引入了多项式的特征。

        为了推导方便,此处使用x,y

                

                

        

高斯核函数

        

        也叫 RBF核函数、径向基函数

        Radial Basic Function Kernel

        

        则根据下图可知,当 γ 越大的时候,映射的高斯函数就越发陡峭。

                

        在做高斯核映射时,需要选择地标。也就是下图中公式里的 y。

        

        每个数据点都可以当做地标。

        所以有多少个数据就会映射出多少个维度。

        假定现在有m个维度为n的数据,则高斯核就可以将其映射成mxm维的数据。

        当m非常大的时候,高斯核的运算效率其实很低,但当m并不大甚至小于n的时候,使用核函数就会变得非常高效了。(?存疑 核函数不是升维吗?)

存疑(以下为GPT解答)

在使用高斯核函数进行样本处理时,将维度缩减是一种常见的降维技术。核函数能够将原始样本从n维映射到m维(m < n),从而达到降低样本维度的目的。

为什么在m小于n的情况下仍然要使用核函数呢?这是因为核函数的作用不仅仅是降维,还能够通过非线性映射将样本从原始空间映射到一个更高维的特征空间,从而更好地分离不同类别的样本。即使在降维的过程中,核函数也能够通过引入额外的非线性维度来提高分类性能。

具体来说,当m小于n时,使用核函数的优势在于:

  1. 非线性映射:核函数通过非线性映射将样本从原始空间映射到一个更高维的特征空间,可以更好地分离不同类别的样本。

  2. 解决线性不可分问题:在原始空间中,某些样本可能是线性不可分的,但在高维特征空间中可能是线性可分的。通过核函数的映射,可以将原始空间中线性不可分的样本转换为高维特征空间中线性可分的样本,从而提高分类的准确性。

  3. 计算效率:尽管高斯核在特征空间中引入了更高的维度,但由于核函数的计算与原始样本维度无关,因此计算效率并不受到影响。相反,通过核技巧,我们可以在低维空间中计算高维特征空间的内积,避免了显式地进行高维计算,从而提高了计算效率。

总之,即使在m小于n的情况下,使用核函数仍然能够发挥作用,通过非线性映射和解决线性不可分问题来提高分类性能,并且可以在计算效率上获得一定的优势。


 7、非线性SVM代码实现

如何选择核函数?

当特征多且接近样本数量,可直接选择线性核SVM。

当特征数少,样本数正常,推荐选用高斯核函数。

当特征数少,样本数很大,建议选择多项式核函数,切记阶数不能过高,否则复杂度过高,难以计算。

多项式特征解决非线性问题

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_moons
x, y = make_moons(n_samples=100, noise=0.2, random_state=0)plt.scatter(x[:,0], x[:,1], c = y)
plt.show()

from sklearn.svm import LinearSVClsvc = LinearSVC()
lsvc.fit(x,y)

LinearSVC

LinearSVC()
def decision_boundary_plot(X, y, clf):axis_x1_min, axis_x1_max = X[:,0].min() - 1, X[:,0].max() + 1axis_x2_min, axis_x2_max = X[:,1].min() - 1, X[:,1].max() + 1x1, x2 = np.meshgrid( np.arange(axis_x1_min,axis_x1_max, 0.01) , np.arange(axis_x2_min,axis_x2_max, 0.01))z = clf.predict(np.c_[x1.ravel(),x2.ravel()])z = z.reshape(x1.shape)from matplotlib.colors import ListedColormapcustom_cmap = ListedColormap(['#F5B9EF','#BBFFBB','#F9F9CB'])plt.contourf(x1, x2, z, cmap=custom_cmap)plt.scatter(X[:,0], X[:,1], c=y)plt.show()
decision_boundary_plot(x,y,lsvc)

from sklearn.preprocessing import PolynomialFeatures, StandardScaler
from sklearn.pipeline import Pipeline
poly_svc = Pipeline([("poly", PolynomialFeatures(degree=3)),("std_scaler", StandardScaler()),("linearSVC", LinearSVC())
])
poly_svc.fit(x,y)

Pipeline

Pipeline(steps=[('poly', PolynomialFeatures(degree=3)),('std_scaler', StandardScaler()), ('linearSVC', LinearSVC())])

PolynomialFeatures

PolynomialFeatures(degree=3)

StandardScaler

StandardScaler()

LinearSVC

LinearSVC()
decision_boundary_plot(x,y,poly_svc)

核函数解决非线性问题

from sklearn.svm import SVC
poly_svc = Pipeline([("std_scaler", StandardScaler()),("polySVC", SVC(kernel='poly', degree=3, coef0=5 ))
])
poly_svc.fit(x,y)

Pipeline

Pipeline(steps=[('std_scaler', StandardScaler()),('polySVC', SVC(coef0=5, kernel='poly'))])

StandardScaler

StandardScaler()

SVC

SVC(coef0=5, kernel='poly')
decision_boundary_plot(x,y,poly_svc)

rbf_svc = Pipeline([("std_scaler", StandardScaler()),("rbfSVC", SVC(kernel='rbf', gamma=0.1 ))
])
rbf_svc.fit(x,y)
decision_boundary_plot(x,y,rbf_svc)

rbf_svc = Pipeline([("std_scaler", StandardScaler()),("rbfSVC", SVC(kernel='rbf', gamma=10 ))
])
rbf_svc.fit(x,y)
decision_boundary_plot(x,y,rbf_svc)

rbf_svc = Pipeline([("std_scaler", StandardScaler()),("rbfSVC", SVC(kernel='rbf', gamma=100 ))
])
rbf_svc.fit(x,y)
decision_boundary_plot(x,y,rbf_svc)


 8、SVM解决回归任务

       

       

        解决回归任务则是希望落在 margin 里的样本点越多越好。

        

         

import numpy as np
import matplotlib.pyplot as plt
np.random.seed(666)
x = np.random.uniform(-3,3,size=100)
y = 0.5 * x**2 +x +2 +np.random.normal(0,1,size=100)
X = x.reshape(-1,1)
plt.scatter(x,y)
plt.show()

from sklearn.svm import LinearSVR
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
def StandardLinearSVR(epsilon=0.1):return Pipeline([("std_scaler",StandardScaler()),("linearSVR",LinearSVR(epsilon=epsilon))])
svr = StandardLinearSVR()
svr.fit(X,y)
y_predict = svr.predict(X)
plt.scatter(x,y)
plt.plot(np.sort(x),y_predict[np.argsort(x)],color='r')
plt.show()

svr.score(X,y)
0.48764762540009954
from sklearn.svm import SVR
def StandardSVR(epsilon=0.1):return Pipeline([('std_scaler',StandardScaler()),('SVR',SVR(kernel='rbf',epsilon=epsilon))])
svr = StandardSVR()
svr.fit(X,y)
y_predict = svr.predict(X)
plt.scatter(x,y)
plt.plot(np.sort(x),y_predict[np.argsort(x)],color='r')
plt.show()

svr.score(X,y)
0.8138647789256847


9、SVM的优缺点及用条件

        优点:

                1、高效处理非线性数据

                2、L2正则化特性,良好的泛化能力

                3、解决分类 SVC 和回归 SVR 问题

                4、稳定性

        缺点:

                1、选择合适的核函数比较困难

                2、大量内存需求,必须将所有的支持向量都存储在内存中

                3、大数据集上训练时间长

                4、难以解释

        适用条件:小样本数据、非线性数据


参考

核函数 高斯核函数,线性核函数,多项式核函数-CSDN博客

对SVM中核函数的理解_核函数优缺点-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/220702.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unity中URP下的菲涅尔效果实现(个性化修改)

文章目录 前言一、我们修正一下上篇文章中&#xff0c;可能遗留的Bug1、N向量 变为 单位向量2、使颜色范围在合理区间 二、实现菲涅尔效果强弱可自定义调节三、修改菲涅尔效果颜色1、在属性面板定义颜色属性2、在常量缓冲区申明该参数3、在片元着色器中&#xff0c;用颜色和菲涅…

使用 React 实现自定义数据展示日历组件

目录 背景实现日历组件父组件数据 效果最后 背景 项目中需要实现一个日历组件&#xff0c;并且需要展示月&#xff0c;日所对应的数据&#xff08;因为项目需求问题&#xff0c;就不统计年数据总量&#xff09;。网上找了一堆&#xff0c;基本都不大符合项目需求&#xff0c;且…

Java 基础学习(十一)File类与I/O操作

1 File类 1.1 File类概述 1.1.1 什么是File类 File是java.io包下作为文件和目录的类。File类定义了一些与平台无关的方法来操作文件&#xff0c;通过调用File类中的方法可以得到文件和目录的描述信息&#xff0c;包括名称、所在路径、读写性和长度等&#xff0c;还可以对文件…

计算机网络:物理层(编码与调制)

今天又学会了一个知识&#xff0c;加油&#xff01; 目录 一、基带信号与宽带信号 1、基带信号 2、宽带信号 3、选择 4、关系 二、数字数据编码为数字信号 1、非归零编码【NRZ】 2、曼彻斯特编码 3、差分曼彻斯特编码 4、归零编码【RZ】 5、反向不归零编码【NRZI】 …

Ubuntu安装ARM交叉编译器

Ubuntu安装交叉编译器 更新apt # 更新apt sudo apt update安装gcc sudo apt install build-essential查看gcc版本 gcc -v下载交叉编译工具 复制到用户目录 解压 tar -xvf gcc-linaro-5.5.0-2017.10-x86_64_arm-linux-gnueabihf.tar.xz移动到/opt/下 sudo ./gcc-linaro-5.…

环境搭建及源码运行_java环境搭建_maven

书到用时方恨少、觉知此时要躬行&#xff1b;拥有技术&#xff0c;成就未来&#xff0c;抖音视频教学地址&#xff1a;​​​​​​​ ​​​​​​​ 1、介绍 1&#xff09;管理项目依赖和版本 统一的项目依赖和版本管理 ​​​​​​​​​​​ 2&#xff09;Maven支持多模块…

创建型设计模式 | 原型模式

一、原型模式 1、原理 原型模式&#xff0c;用原型实例指定创建对象的种类&#xff0c;并且通过拷贝这些原型创建新的对象。原型模式其实就是从一个对象再创建另外一个可定制的对象&#xff0c;而且不需要知道任何创建的细节。原型像是一个模板&#xff0c;可以基于它复制好多…

如何让.NET应用使用更大的内存

我一直在思考为何Redis这种应用就能独占那么大的内存空间而我开发的应用为何只有4GB大小左右&#xff0c;在此基础上也问了一些大佬&#xff0c;最终还是验证下自己的猜测。 操作系统限制 主要为32位操作系统和64位操作系统。 每个进程自身还分为了用户进程空间和内核进程空…

HarmonyOS NEXT:技术革新与生态挑战的交汇点

背景 在上周&#xff08;2023年12月11日&#xff09;我有幸参加了在上海举办的华为鸿蒙生态学堂创新实训营。 参加这个活动的原因是近期关于华为的HarmonyOS NEXT不再兼容Android的消息&#xff0c;也就是说我们的Apk无法在纯血版的HarmonyOS NEXT上运行。 随后就是一些头部的…

记一次挖矿脚本应急排查

这里写目录标题 起因上机排查总结 起因 这几天返校进行实习答辩&#xff0c;没怎么关注服务器状态&#xff0c;结果收到了阿里云警告&#xff0c;咱也不知道怎么个事&#xff0c;突然就被种上挖矿脚本了(盲猜自己搭建的一些docker服务被打了) 上机排查 top看一下系统系统资…

小红书可观测 Metrics 架构演进,如何实现数十倍性能提升?

在当前云原生时代&#xff0c;随着微服务架构的广泛应用&#xff0c;云原生可观测性概念被广泛讨论。可观测技术建设&#xff0c;将有助于跟踪、了解和诊断生产环境问题&#xff0c;辅助开发和运维人员快速发现、定位和解决问题&#xff0c;支撑风险追溯、经验沉淀、故障预警&a…

css的filter全属性介绍

原图&#xff1a; 模糊&#xff08;blur&#xff09; 单位可为px或rem&#xff0c;值越大&#xff0c;越模糊 filter:blur(3px) filter:blur(0.3rem) 亮度(brightness) 值可为数字或百分数&#xff0c;小于1时&#xff0c;亮度更暗&#xff1b;等于1时&#xff0c;无变化&am…

vp与vs联合开发-通过CogAcqFifoTool工具连接相机

1.完成相机硬件配置后 2.完成vp与vs联合开发配置功能后 1.创建winform 项目 目的 : 搭建 界面应用 2. 1. vpp文件存入 项目的debug 目录中 目的&#xff1a; 在项目中加载本地vpp文件 读取相机工具 1.控件CogRecordDisplay 用于显示相机拍摄照片和实施显示的窗口 2和3 …

【一】FPGA实现SPI协议之SPI协议介绍

【一】FPGA实现SPI协议之SPI协议介绍 一、spi协议解析 spi协议有4根线&#xff0c;主机输出从机输入MOSI、主机输入从机输出MISO、时钟信号SCLK、片选信号SS\CS 。 一般用于主机和从机之间通信。由主机发起读请求和写请求&#xff0c;主机的权限是主动的&#xff0c;从机是被…

计算机网络2

OSI参考模型七层&#xff1a; 1.应用层 2.表示层 3.会话层 4.传输层 5.网络层 6.数据链路层 7.物理层 TCP/IP模型 5层参考模型

统一大语言模型和知识图谱:如何解决医学大模型-问诊不充分、检查不准确、诊断不完整、治疗方案不全面?

统一大语言模型和知识图谱&#xff1a;如何解决医学大模型问诊不充分、检查不准确、诊断不完整、治疗方案不全面&#xff1f; 医学大模型问题如何使用知识图谱加强和补足专业能力&#xff1f;大模型结构知识图谱增强大模型的方法 医学大模型问题 问诊。偏离主诉和没抓住核心。…

scrapy的入门和使用

scrapy的入门使用 学习目标&#xff1a; 掌握 scrapy的安装应用 创建scrapy的项目应用 创建scrapy爬虫应用 运行scrapy爬虫应用 scrapy定位以及提取数据或属性值的方法掌握 response响应对象的常用属性 1 安装scrapy 命令:     sudo apt-get install scrapy 或者&#x…

OpenCV技术应用(7)— 将图像转为热力图

前言&#xff1a;Hello大家好&#xff0c;我是小哥谈。本节课就手把手教大家如何将一幅图像转化成热力图&#xff0c;希望大家学习之后能够有所收获~&#xff01;&#x1f308; 目录 &#x1f680;1.技术介绍 &#x1f680;2.实现代码 &#x1f680;1.技术介绍 伪彩色处…

[Excel] vlookup函数

VLOOKUP用法 VLOOKUP(lookup_value, table_array, col_index_num, [range_lookup])其中&#xff1a; lookup_value是你要查找的值table_array是你要在其中进行查找的表格区域col_index_num是你要返回的在table_array中列索引号range_lookup是一个可选参数&#xff0c;用于指定…

IDEA出现闪退或打不开的解决方法

目录 1. 问题所示2. 原理分析3. 解决方法4. 补充1. 问题所示 打开IDEA的时候过一会便闪退,可以再IDEA的右下角看到如下提示 (如果没有该提示,软件右下角也会有个红色感叹号,点开查看原因即可) 点开details方便排查闪退的具体原因: There is insufficient memory for the…