数据可视化---饼图、环形图、雷达图

类别内容导航
机器学习机器学习算法应用场景与评价指标
机器学习算法—分类
机器学习算法—回归
机器学习算法—聚类
机器学习算法—异常检测
机器学习算法—时间序列
数据可视化数据可视化—折线图
数据可视化—箱线图
数据可视化—柱状图
数据可视化—饼图、环形图、雷达图
统计学检验箱线图筛选异常值
3 Sigma原则筛选离群值
Python统计学检验
大数据PySpark大数据处理详细教程
使用教程CentOS服务器搭建Miniconda环境
Linux服务器配置免密SSH
大数据集群缓存清理
面试题整理面试题—机器学习算法
面试题—推荐系统

  • 饼状图:展示了四个类别(A, B, C, D)的数据,每个类别的比例标注在图中。
  • 环形图:与饼状图使用相同的数据,但采用环形设计,以不同的视觉风格呈现相同的信息。
  • 雷达图:展示了六个不同指标(Metric 1 至 Metric 6)的数据,以雷达图的形式展现每个指标的数值。
    这些图表可以根据您的数据和需求进行调整,以便更好地呈现信息。您可以改变数据集、标签和标题来自定义这些图表。 ​
import matplotlib.pyplot as plt
import numpy as npdef plot_pie_chart(data, labels, title="Pie Chart"):"""绘制饼状图。:param data: 包含数值的列表。:param labels: 与数据相对应的标签列表。:param title: 图表的标题。"""fig, ax = plt.subplots()ax.pie(data, labels=labels, autopct='%1.1f%%', startangle=140)ax.axis('equal')  # Equal aspect ratio ensures the pie chart is circular.plt.title(title)plt.show()# 示例数据
pie_data = [35, 25, 25, 15]
pie_labels = ['Category A', 'Category B', 'Category C', 'Category D']# 绘制图表
plot_pie_chart(pie_data, pie_labels, title="Example Pie Chart")

在这里插入图片描述

import matplotlib.pyplot as plt
import numpy as npdef plot_donut_chart(data, labels, title="Donut Chart"):"""绘制环形图。:param data: 包含数值的列表。:param labels: 与数据相对应的标签列表。:param title: 图表的标题。"""fig, ax = plt.subplots()ax.pie(data, labels=labels, autopct='%1.1f%%', startangle=140, pctdistance=0.85)# Draw a circle at the center of pie to make it look like a donutcentre_circle = plt.Circle((0,0),0.70,fc='white')fig = plt.gcf()fig.gca().add_artist(centre_circle)ax.axis('equal')  # Equal aspect ratio ensures the pie chart is circular.plt.title(title)plt.show()# 示例数据
pie_data = [35, 25, 25, 15]
pie_labels = ['Category A', 'Category B', 'Category C', 'Category D']# 绘制图表
plot_donut_chart(pie_data, pie_labels, title="Example Donut Chart")

在这里插入图片描述

import matplotlib.pyplot as plt
import numpy as npdef plot_radar_chart(data, labels, title="Radar Chart"):"""绘制雷达图。:param data: 包含数值的列表。:param labels: 与数据相对应的标签列表。:param title: 图表的标题。"""num_vars = len(labels)angles = np.linspace(0, 2 * np.pi, num_vars, endpoint=False).tolist()data += data[:1]angles += angles[:1]fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))ax.fill(angles, data, color='blue', alpha=0.25)ax.plot(angles, data, color='blue', linewidth=2)  # Draw the outline of our dataax.set_yticklabels([])ax.set_xticks(angles[:-1])ax.set_xticklabels(labels)plt.title(title, y=1.1)plt.show()# 示例数据
radar_data = [4, 5, 6, 3, 2, 5]
radar_labels = ['Metric 1', 'Metric 2', 'Metric 3', 'Metric 4', 'Metric 5', 'Metric 6']# 绘制图表
plot_radar_chart(radar_data, radar_labels, title="Example Radar Chart")

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/220709.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PDF转为图片

PDF转为图片 背景pdf展示目标效果 发展过程最终解决方案:python PDF转图片pdf2image注意:poppler 安装 背景 最近接了一项目,主要的需求就是本地的文联单位,需要做一个电子刊物阅览的网站,将民族的刊物发布到网站上供…

LVS简介及LVS-NAT负载均衡群集的搭建

目录 LVS群集简介 群集的含义和应用场景 性能扩展方式 群集的分类 负载均衡(LB) 高可用(HA) 高性能运算(HPC) LVS的三种工作模式 NAT 地址转换 TUN IP隧道 IP Tunnel DR 直接路由 Direct Rout…

Xpath注入

这里学习一下xpath注入 xpath其实是前端匹配树的内容 爬虫用的挺多的 XPATH注入学习 - 先知社区 查询简单xpath注入 index.php <?php if(file_exists(t3stt3st.xml)) { $xml simplexml_load_file(t3stt3st.xml); $user$_GET[user]; $query"user/username[name&q…

SLAM学习——相机模型(针孔+鱼眼)

针孔相机模型 针孔相机模型是很常用&#xff0c;而且有效的模型&#xff0c;它描述了一束光线通过针孔之后&#xff0c;在针孔背面投影成像的关系&#xff0c;基于针孔的投影过程可以通过针孔和畸变两个模型来描述。 模型中有四个坐标系&#xff0c;分别为world&#xff0c;c…

机器学习 | SVM支持向量机

欲穷千里目&#xff0c;更上一层楼。 一个空间的混乱在更高维度的空间往往意味着秩序。 Machine-Learning: 《机器学习必修课&#xff1a;经典算法与Python实战》配套代码 - Gitee.com 1、核心思想及原理 针对线性模型中分类两类点的直线如何确定。这是一个ill-posed problem。…

Unity中URP下的菲涅尔效果实现(个性化修改)

文章目录 前言一、我们修正一下上篇文章中&#xff0c;可能遗留的Bug1、N向量 变为 单位向量2、使颜色范围在合理区间 二、实现菲涅尔效果强弱可自定义调节三、修改菲涅尔效果颜色1、在属性面板定义颜色属性2、在常量缓冲区申明该参数3、在片元着色器中&#xff0c;用颜色和菲涅…

使用 React 实现自定义数据展示日历组件

目录 背景实现日历组件父组件数据 效果最后 背景 项目中需要实现一个日历组件&#xff0c;并且需要展示月&#xff0c;日所对应的数据&#xff08;因为项目需求问题&#xff0c;就不统计年数据总量&#xff09;。网上找了一堆&#xff0c;基本都不大符合项目需求&#xff0c;且…

Java 基础学习(十一)File类与I/O操作

1 File类 1.1 File类概述 1.1.1 什么是File类 File是java.io包下作为文件和目录的类。File类定义了一些与平台无关的方法来操作文件&#xff0c;通过调用File类中的方法可以得到文件和目录的描述信息&#xff0c;包括名称、所在路径、读写性和长度等&#xff0c;还可以对文件…

计算机网络:物理层(编码与调制)

今天又学会了一个知识&#xff0c;加油&#xff01; 目录 一、基带信号与宽带信号 1、基带信号 2、宽带信号 3、选择 4、关系 二、数字数据编码为数字信号 1、非归零编码【NRZ】 2、曼彻斯特编码 3、差分曼彻斯特编码 4、归零编码【RZ】 5、反向不归零编码【NRZI】 …

Ubuntu安装ARM交叉编译器

Ubuntu安装交叉编译器 更新apt # 更新apt sudo apt update安装gcc sudo apt install build-essential查看gcc版本 gcc -v下载交叉编译工具 复制到用户目录 解压 tar -xvf gcc-linaro-5.5.0-2017.10-x86_64_arm-linux-gnueabihf.tar.xz移动到/opt/下 sudo ./gcc-linaro-5.…

环境搭建及源码运行_java环境搭建_maven

书到用时方恨少、觉知此时要躬行&#xff1b;拥有技术&#xff0c;成就未来&#xff0c;抖音视频教学地址&#xff1a;​​​​​​​ ​​​​​​​ 1、介绍 1&#xff09;管理项目依赖和版本 统一的项目依赖和版本管理 ​​​​​​​​​​​ 2&#xff09;Maven支持多模块…

创建型设计模式 | 原型模式

一、原型模式 1、原理 原型模式&#xff0c;用原型实例指定创建对象的种类&#xff0c;并且通过拷贝这些原型创建新的对象。原型模式其实就是从一个对象再创建另外一个可定制的对象&#xff0c;而且不需要知道任何创建的细节。原型像是一个模板&#xff0c;可以基于它复制好多…

如何让.NET应用使用更大的内存

我一直在思考为何Redis这种应用就能独占那么大的内存空间而我开发的应用为何只有4GB大小左右&#xff0c;在此基础上也问了一些大佬&#xff0c;最终还是验证下自己的猜测。 操作系统限制 主要为32位操作系统和64位操作系统。 每个进程自身还分为了用户进程空间和内核进程空…

HarmonyOS NEXT:技术革新与生态挑战的交汇点

背景 在上周&#xff08;2023年12月11日&#xff09;我有幸参加了在上海举办的华为鸿蒙生态学堂创新实训营。 参加这个活动的原因是近期关于华为的HarmonyOS NEXT不再兼容Android的消息&#xff0c;也就是说我们的Apk无法在纯血版的HarmonyOS NEXT上运行。 随后就是一些头部的…

记一次挖矿脚本应急排查

这里写目录标题 起因上机排查总结 起因 这几天返校进行实习答辩&#xff0c;没怎么关注服务器状态&#xff0c;结果收到了阿里云警告&#xff0c;咱也不知道怎么个事&#xff0c;突然就被种上挖矿脚本了(盲猜自己搭建的一些docker服务被打了) 上机排查 top看一下系统系统资…

小红书可观测 Metrics 架构演进,如何实现数十倍性能提升?

在当前云原生时代&#xff0c;随着微服务架构的广泛应用&#xff0c;云原生可观测性概念被广泛讨论。可观测技术建设&#xff0c;将有助于跟踪、了解和诊断生产环境问题&#xff0c;辅助开发和运维人员快速发现、定位和解决问题&#xff0c;支撑风险追溯、经验沉淀、故障预警&a…

css的filter全属性介绍

原图&#xff1a; 模糊&#xff08;blur&#xff09; 单位可为px或rem&#xff0c;值越大&#xff0c;越模糊 filter:blur(3px) filter:blur(0.3rem) 亮度(brightness) 值可为数字或百分数&#xff0c;小于1时&#xff0c;亮度更暗&#xff1b;等于1时&#xff0c;无变化&am…

vp与vs联合开发-通过CogAcqFifoTool工具连接相机

1.完成相机硬件配置后 2.完成vp与vs联合开发配置功能后 1.创建winform 项目 目的 : 搭建 界面应用 2. 1. vpp文件存入 项目的debug 目录中 目的&#xff1a; 在项目中加载本地vpp文件 读取相机工具 1.控件CogRecordDisplay 用于显示相机拍摄照片和实施显示的窗口 2和3 …

【一】FPGA实现SPI协议之SPI协议介绍

【一】FPGA实现SPI协议之SPI协议介绍 一、spi协议解析 spi协议有4根线&#xff0c;主机输出从机输入MOSI、主机输入从机输出MISO、时钟信号SCLK、片选信号SS\CS 。 一般用于主机和从机之间通信。由主机发起读请求和写请求&#xff0c;主机的权限是主动的&#xff0c;从机是被…

计算机网络2

OSI参考模型七层&#xff1a; 1.应用层 2.表示层 3.会话层 4.传输层 5.网络层 6.数据链路层 7.物理层 TCP/IP模型 5层参考模型