智能优化算法应用:基于人工电场算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于人工电场算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于人工电场算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.人工电场算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用人工电场算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.人工电场算法

人工电场算法原理请参考:https://blog.csdn.net/u011835903/article/details/118929142
人工电场算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

人工电场算法参数如下:

%% 设定人工电场优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明人工电场算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/220731.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IDEA运行JSP启动后页面中文乱码

源代码截图&#xff1a; 运行结果截图&#xff1a; 在<head>标签内加入代码 <% page contentType"text/html; charsetgb2312"%> 重启服务器&#xff0c;问题已改善 ————————————————— 该文仅供学习以及参考&#xff0c;可做笔记收藏…

【数据结构】(堆)Top-k|堆排序

目录 概念&#xff1a; 堆的实现 构建 初始化 销毁 插入元素 往上调整 删除堆顶元素 往下调整 返回堆顶元素 返回有效个数 是否为空 堆排序 Top-k问题 ​编辑 创建数据 堆top-k 概念&#xff1a; 堆是将数据按照完全二叉树存储方式存储到一维数组中&#xff…

【Python】—— 如果使用matplotlib做数据可视化

matplotlib做数据可视化 相关知识掌握matplotlib的基本使用方法1. 折线图2. 散点图3. 柱状图4. 饼图5. 直方图6. 等高线图7. 图形定制 掌握数据处理的基本方法1. 数据筛选2. 缺失值处理3. 异常值处理 理解数据可视化的原则和方法1. 选择合适的图表类型2. 避免数据混淆3. 突出重…

金智融门户(统一身份认证)同步数据至钉钉通讯录

前言:因全面使用金智融门户和数据资产平台,二十几个信息系统已实现统一身份认证和数据同步,目前单位使用的钉钉尚未同步组织机构和用户信息,职工入职、离职、调岗时都需要手工在钉钉后台操作,一是操作繁琐,二是钉钉通讯录更新不及时或经常遗漏,带来管理问题。通过金智融…

.NET 自定义中间件 判断是否存在 AllowAnonymousAttribute 特性 来判断是否需要身份验证

public Task InvokeAsync(HttpContext context){// 获取终点路由特性var endpointFeature context.Features.Get<IEndpointFeature>();// 获取是否定义了特性var attribute endpointFeature?.Endpoint?.Metadata?.GetMetadata<AllowAnonymousAttribute>();if …

修复泰坦陨落2缺少msvcr120.dll的5种方法,亲测有效

游戏《泰坦陨落2》缺少msvcr120.dll的问题困扰着许多玩家。这个问题的主要原因可能是系统环境不完整、软件或游戏版本不匹配、DLL文件丢失或损坏以及杀毒软件误判等。msvcr120.dll是Microsoft Visual C 2013 Redistributable的一个组件&#xff0c;它包含了许多运行库文件&…

LeetCode 142. 环形链表 II

给定一个链表的头节点 head &#xff0c;返回链表开始入环的第一个节点。 如果链表无环&#xff0c;则返回 null。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xff0c;评测系统内部使用整…

运维实践|采集MySQL数据出现many connection errors

文章目录 问题出现问题分析当前环境问题分析 解决方案1 检查调度事件任务是否开启2 开启调度事件任务3 创建一张日志表4 创建函数存储过程5 创建事件定时器6 开启事件调度任务7 检查核实是否创建 总结 问题出现 最近在做OGG结构化数据采集工作&#xff0c;在数据采集过程中&am…

【微服务】Spring Aop原理深入解析

目录 一、前言 二、aop概述 2.1 什么是AOP 2.2 AOP中的一些概念 2.2.1 aop通知类型 2.3 AOP实现原理 2.3.1 aop中的代理实现 2.4 静态代理与动态代理 2.4.1 静态代理实现 三、 jdk动态代理与cglib代理 3.1 jdk动态代理 3.1.1 jdk代理示例 3.1.2 jdk动态代理模拟实现…

用23种设计模式打造一个cocos creator的游戏框架----(二十)解析器模式

1、模式标准 模式名称&#xff1a;解析器模式 模式分类&#xff1a;行为型 模式意图&#xff1a;给定一个语言&#xff0c;定义它的文法的一种表示&#xff0c;并定义一个解释器&#xff0c;这个解释器使用该表示来解释语言中的句子。 结构图&#xff1a; 适用于&#xff1…

TikTok矩阵玩法分享,如何建立TikTok矩阵?

矩阵是在 TikTok 上非常常见的营销方式&#xff0c;很多卖家想要通过矩阵化运营快速涨粉。但要想做好TikTok矩阵&#xff0c;需要有明确的方向和计划。下面东哥我将分享一些做TikTok矩阵的玩法&#xff0c;帮助大家更好地搭建自己的TikTok矩阵。 了解TikTok矩阵 TikTok矩阵是一…

Qt 数据库QSqlDatabase使用记录

记录一些在QT中使用QSqlDatabase操作数据库时&#xff0c;需要注意的地方 创建数据库 bool CDBOperatorAbstract::_openDBConn(CDatabaseConfig config) {QWriteLocker locker(&m_locker);QSqlDatabase db;if(QSqlDatabase::contains(m_connectionName)){db QSqlDatabas…

微信小程序校园跑腿系统怎么做,如何做,要做多久

​ 在这个互联网快速发展、信息爆炸的时代&#xff0c;人人都离不开手机&#xff0c;每个人都忙于各种各样的事情&#xff0c;大学生也一样&#xff0c;有忙于学习&#xff0c;忙于考研&#xff0c;忙着赚学分&#xff0c;忙于参加社团&#xff0c;当然也有忙于打游戏的&#x…

数据可视化---饼图、环形图、雷达图

类别内容导航机器学习机器学习算法应用场景与评价指标机器学习算法—分类机器学习算法—回归机器学习算法—聚类机器学习算法—异常检测机器学习算法—时间序列数据可视化数据可视化—折线图数据可视化—箱线图数据可视化—柱状图数据可视化—饼图、环形图、雷达图统计学检验箱…

PDF转为图片

PDF转为图片 背景pdf展示目标效果 发展过程最终解决方案&#xff1a;python PDF转图片pdf2image注意&#xff1a;poppler 安装 背景 最近接了一项目&#xff0c;主要的需求就是本地的文联单位&#xff0c;需要做一个电子刊物阅览的网站&#xff0c;将民族的刊物发布到网站上供…

LVS简介及LVS-NAT负载均衡群集的搭建

目录 LVS群集简介 群集的含义和应用场景 性能扩展方式 群集的分类 负载均衡&#xff08;LB&#xff09; 高可用&#xff08;HA&#xff09; 高性能运算&#xff08;HPC&#xff09; LVS的三种工作模式 NAT 地址转换 TUN IP隧道 IP Tunnel DR 直接路由 Direct Rout…

Xpath注入

这里学习一下xpath注入 xpath其实是前端匹配树的内容 爬虫用的挺多的 XPATH注入学习 - 先知社区 查询简单xpath注入 index.php <?php if(file_exists(t3stt3st.xml)) { $xml simplexml_load_file(t3stt3st.xml); $user$_GET[user]; $query"user/username[name&q…

SLAM学习——相机模型(针孔+鱼眼)

针孔相机模型 针孔相机模型是很常用&#xff0c;而且有效的模型&#xff0c;它描述了一束光线通过针孔之后&#xff0c;在针孔背面投影成像的关系&#xff0c;基于针孔的投影过程可以通过针孔和畸变两个模型来描述。 模型中有四个坐标系&#xff0c;分别为world&#xff0c;c…

机器学习 | SVM支持向量机

欲穷千里目&#xff0c;更上一层楼。 一个空间的混乱在更高维度的空间往往意味着秩序。 Machine-Learning: 《机器学习必修课&#xff1a;经典算法与Python实战》配套代码 - Gitee.com 1、核心思想及原理 针对线性模型中分类两类点的直线如何确定。这是一个ill-posed problem。…

Unity中URP下的菲涅尔效果实现(个性化修改)

文章目录 前言一、我们修正一下上篇文章中&#xff0c;可能遗留的Bug1、N向量 变为 单位向量2、使颜色范围在合理区间 二、实现菲涅尔效果强弱可自定义调节三、修改菲涅尔效果颜色1、在属性面板定义颜色属性2、在常量缓冲区申明该参数3、在片元着色器中&#xff0c;用颜色和菲涅…