机器学习算法(11)——集成技术(Boosting——梯度提升)

一、说明

        在在这篇文章中,我们学习了另一种称为梯度增强的集成技术。这是我在机器学习算法集成技术文章系列中与bagging一起介绍的一种增强技术。我还讨论了随机森林和 AdaBoost 算法。但在这里我们讨论的是梯度提升,在我们深入研究梯度提升之前,了解决策树很重要。因此,如果您不熟悉决策树,那么理解梯度提升可能并不容易。请参阅本文以更好地了解决策树。        

二、建立模型

        我们以身高最喜欢的颜色、性别作为独立特征,体重作为输出特征的数据集为例。我们有 6 条记录。

2.1 步骤1:

        决策树的第一步是计算基本模型,它是所有权重的平均值

Average Salary(ŷ)  = (88 + 76 + 56 + 73 + 77 + 57)/ 6 = 71.17 ≈ 71

        当我们给出训练数据集时,预测值为71.17。这只是我们计算的平均工资。为了更好的解释,我们将其用作≈71 。

2.2 第2步:

        在第二步中,我们将计算残差,也称为伪残差。在回归中,我们使用损失函数来计算误差。有不同的损失函数,例如均方误差、回归和对数损失的均方根误差以及分类的铰链损失。根据所选的损失函数,我们将计算残差。在这种情况下,我们将使用一个简单的损失函数。损失将通过从预测值中减去实际值来计算(例如,我们使用此计算),从而产生一个名为R1的新列,表示残差。

        例如,如果我们从 88 中减去 71 ,则第一条记录的残差将为17

2.3 步骤3:

        建立好这个基础模型后,我们将依次添加一棵决策树。在这个决策树中,我的输入是身高、最喜欢的颜色和性别。我的依赖特征不是重量。这将是残余误差 R1。基于此我们可以创建决策树。

        现在我们有了一个基本模型和一个决策树。我们已经训练了决策树。当我们将新数据传递给决策树时,它将预测残差值的输出。我们将其命名为残差 2(R2)输出。

        在此基础上,让我们检查一下预测的进展情况。假设我们得到这样的 R2 值。

R2 值

        因此,每当我们通过基本模型获取第一条记录时,它将是71(我们计算的平均值)。转到决策树 1,我们将获得一些残差值。从上图中,您可以看到我们获得的第一条记录的残差值(R2)为 15 。如果我们将其与 71 相加,我们将得到一个值86,该值非常接近实际值。

1st Record
==================
R1 = 15
Average Weight = 71
Predicted Weight = 71 + 15 = 86

        然而,这凸显了决策树模型中的过度拟合问题。我们想要创建一个具有低方差和低偏差的通用模型。在这种情况下,我们的偏差较低,但方差较高,这意味着当引入新的测试数据时,该值可能会下降。为了解决这个问题,我们将向模型添加学习率Alpha (α)和 R2 值。学习率应该在 0 到 1 之间。

Assume α = 0.1
Predicted Weight  = Avearge Weight + α (R2 Value)= 71 + (0.1)15 = 72.5

在这里您可以看到72.5,这与实际重量存在显着差异。将根据残差 2(R2) 值和相同的独立特征添加额外的决策树来解决此问题。该决策树将依次计算我的下一个残差。通用公式可以写成:

F(x) = h0x + α1 h1x + α2 h2x + α3 h3x + ....... + αn hnxF(x) = i = 1 -> n Σ αi hixh0x = Base Model 
hnxn = Output given by any desicion tree

目标是通过根据残差顺序创建决策树来减少残差。Alpha(α)次要参数将使用次要参数调整来决定。

基本上,在基本模型之后,我们会依次使用决策树来增强模型。这就是为什么它被称为增强技术。

三、该算法背后的伪代码

        现在我们将深入研究我们创建的伪算法背后的数学原理。尽管看起来很复杂,但我们将分解每个步骤以帮助您理解该过程。我们使用的数据集包括身高、喜欢的颜色、性别和体重,共有 6 条记录。身高、喜欢的颜色和性别是我的独立特征,体重是我的从属特征

3.1 遵循伪算法所需的基本步骤

  • 提供输入——独立和相关特征。
  • 提供损失函数——这对于分类问题(对数损失和铰链损失)或回归问题(均方误差、均方根误差)可能有所不同。所有的损失函数应该是可微的(能够求导数)。
  • 找出梯度提升算法中需要多少棵树。

3.2 计算步骤

3.2.1 步骤1 -

        梯度提升的第一步是构建一个基础模型来预测训练数据集中的观察结果。为简单起见,我们取目标列 (ŷ) 的平均值,并假设其为预测值,如红色列下方所示。

为什么我说我们取目标列的平均值?嗯,这涉及到数学。从数学上讲,第一步可以写为:

---------------------------------------------
F0(x) = arg min γ (i = 1 -> n Σ Loss(y,γ))
---------------------------------------------L      = loss function
γ      = predicted value
argmin = we have to find a predicted value/γ for which the loss function is minimum.Loss Function (Regresion)
==========================
Loss  = [i = 0 -> n Σ 1/n (yi - γi)²]yi     = observed value (weight)
γ      = predicted value// Now we need to find a minimum value of γ such that this loss function is minimum. 
// We use to differentiate this loss function and then put it equal to 0 right? Yes, we will do the same here.
d(Loss)/ dγ = d([i = 0 -> n Σ 1/n (yi - γi)²])/ dγ
d(Loss)/ dγ = 2/2(i = 0 -> n Σ (yi - γi)) * (-1) = - (i = 0 -> n Σ (yi - γi)) - equation 1// Let’s see how to do this with the help of our example. 
// Remember that yi is our observed value and γi is our predicted value, by plugging the values in the above formula we get:
d(Loss)/ dγ = - [88 - γ + 76 - γ + 56 - + 73 - γ + 77 - γ + 57 - γ]= - 427 + 6γd(Loss)/ dγ = 0 
- 427 + 6γ  = 0
6γ          = 427
γ           = 71.16 ≈ 71// We end up over an average of the observed weight and this is why I asked you to take the average of the target column and assume it to be your first prediction.Hence for γ=71, the loss function will be minimum so this value will become our prediction for the base model.
==============================================================================================================

3.2.2 第2步-

        下一步是计算伪残差,即(观测值 - 预测值)。图中R1是计算出的残值。

        问题又来了,为什么只是观察到预测?一切都有数学证明,我们看看这个公式从何而来。这一步可以写成:

----------------------------------
rim = - [dL(y1, F(x1)) / dF(x1)]
----------------------------------F(xi) = previous model output
m     = number of DT made// From the equation 1 We are just taking the derivative of loss function
d(Loss)/ dγ = - (i = 0 -> n Σ (yi - γi)) = -(i = 0 -> n Σ (Observed - Predicted))// If you see the formula of residuals above, we see that the derivative of the loss function is multiplied by a negative sign, so now we get:
Observed - Predicted
// The predicted value here is the prediction made by the previous model. 
// In our example the prediction made by the previous model (initial base model prediction) is 71, to calculate the residuals our formula becomes:
(Observed - 71)Finding the rim values for the dataset
-----------------------------------------
r11 = 1st Record of model 1 = (y - ŷ) = 88 - 71 = 17
r21 = 2nd Record of model 1 = (y - ŷ) = 76 - 71 = 5
r31 = 3rd Record of model 1 = (y - ŷ) = 56 - 71 = -15
r41 = 4th Record of model 1 = (y - ŷ) = 73 - 71 = 2
r51 = 5th Record of model 1 = (y - ŷ) = 77 - 71 = 6
r61 = 6th Record of model 1 = (y - ŷ) = 57 - 71 = -14

3.2.3 步骤3—

        下一步,我们将根据这些伪残差建立模型并进行预测。我们为什么要做这个?

        因为我们希望最小化这些残差,最小化残差最终将提高我们的模型准确性和预测能力。因此,使用残差作为目标和原始特征高度最喜欢的颜色和性别,我们将生成新的预测。请注意,在这种情况下,预测将是错误值,而不是预测的权重,因为我们的目标列现在是错误的(R1)

3.2.4 步骤4 -

        在此步骤中,我们找到决策树每个叶子的输出值。这意味着可能存在1 个叶子获得超过 1 个残差的情况,因此我们需要找到所有叶子的最终输出。为了找到输出,我们可以简单地取叶子中所有数字的平均值,无论只有 1 个数字还是多于 1 个数字。

        让我们看看为什么我们要取所有数字的平均值。从数学上讲,该步骤可以表示为:

-----------------------------------------------
γm = argmin γ [i = 1 -> n Σ L(y1, Fm-1(x1) + γhm(xi))]
-------------------------------------------------hm(xi) = DT made on residuals
m      = number of DT
γm     = output value of a particular leaf // m = 1 we are talking about the 1st DT and when it is “M” we are talking about the last DT.
// The output value for the leaf is the value of γ that minimizes the Loss function[Fm-1(xi)+ γhm(xi))] = This is similar as step 1 equation but here the difference is that we are taking previous predictions whereas earlier there was no previous prediction.Let’s understand this even better with the help of an example. Suppose this is our regressor tree:Height(> 1.5)/            \/              \/                \Fav Clr               Gender/ \                    / \/   \                  /   \/     \                /     \R1,1     R2,1           R3,1    R4,117        5, 2           -15    6, -14γm = argmin γ [i = 1 -> n Σ L(y1, Fm-1(x1) + γhm(xi))]
// Using lost function we can write this as,
L(y1, Fm-1(x1) + γhm(xi) = 1/2 (y1 - (Fm-1(x1) + γhm(xi)))^2
Then,
γm = argmin γ [i = 1 -> n Σ 1/2 (y1 - (Fm-1(x1) + γhm(xi)))^2]Let's see 1st residual goes in R1,1
γ1,1 = argmin 1/2(80 - (71 + γ))^2//Now we need to find the value for γ for which this function is minimum. 
// So we find the derivative of this equation w.r.t γ and put it equal to 0.
d (γ1,1) / d γ = d (1/2(88 - (71 + γ))^2) / dγ
0              = d (1/2(88 - (71 + γ))^2) / dγ
80 - (71 + γ)  = 0
γ              = 17Let's see 1st residual goes in R2,1
γ2,1 = argmin 1/2(76 - (71 + γ))^2  +  1/2(73 - (71 + γ))^2//Now we need to find the value for γ for which this function is minimum. 
// So we find the derivative of this equation w.r.t γ and put it equal to 0.
d (γ2,1) / d γ = d (1/2(76 - (71 + γ))^2  +  1/2(73 - (71 + γ))^2) / dγ
0              = d (1/2(76 - (71 + γ))^2  +  1/2(73 - (71 + γ))^2) / dγ
-2γ + 5 + 2    = 0
γ              =  7 /2 = 3.5Let's see 1st residual goes in R3,1
γ3,1 = argmin 1/2(56 - (71 + γ))^2 //Now we need to find the value for γ for which this function is minimum. 
// So we find the derivative of this equation w.r.t γ and put it equal to 0.
d (γ3,1) / d γ = d (1/2(56 - (71 + γ))^2) / dγ
0              = d (1/2(56 - (71 + γ))^2) / dγ
-γ - 15        = 0
γ              = -15Let's see 1st residual goes in R4,1
γ4,1 = argmin 1/2(77 - (71 + γ))^2  +  1/2(57 - (71 + γ))^2//Now we need to find the value for γ for which this function is minimum. 
// So we find the derivative of this equation w.r.t γ and put it equal to 0.
d (γ4,1) / d γ = d (1/2(77 - (71 + γ))^2  +  1/2(57 - (71 + γ))^2) / dγ
0              = d (1/2(77 - (71 + γ))^2  +  1/2(57 - (71 + γ))^2) / dγ
-2γ + 6 -14    = 0
γ              =  -8/2 = -4// We end up with the average of the residuals in the leaf R2,1 and R4,1. Hence if we get any leaf with more than 1 residual, we can simply find the average of that leaf and that will be our final output.

现在计算所有叶子的输出后,我们得到,

3.2.5 步骤 5 —

这最终是我们必须更新先前模型的预测的最后一步。它可以更新为:

---------------------------
Fm(x) = Fm-1(x) + vmhm(x)
---------------------------
m       = number of decision trees made
Fm-1(x) = prediction of the base model (previous prediction) 
Hm(x)   = recent DT made on the residuals// since F1-1= 0 , F0 is our base model hence the previous prediction is 71.
vm is the learning rate that is usually selected between 0-1. It reduces the effect each tree has on the final prediction, and this improves accuracy in the long run. Let’s take vm=0.1 in this example.Let’s calculate the new prediction now:New Prediction F1(x) = 71 + 0.1 * Height(> 1.5)/            \/              \/                \Fav Clr               Gender/ \                    / \/   \                  /   \/     \                /     \R1,1     R2,1           R3,1    R4,117        5, 2           -15    6, -14

        假设我们想要找到高度为 1.7 的第一个数据点的预测。这个数据点将经过这个决策树,它得到的输出将乘以学习率,然后添加到之前的预测中。

        现在,更新预测后,我们需要再次迭代步骤 2 中的步骤以找到另一个决策树。这种情况将会发生,直到我们通过基于残差顺序创建决策树来减少残差。

        现在假设m=2,这意味着我们已经构建了 2 个决策树,现在我们想要有新的预测。

        这次我们将把之前的预测F1(x)添加到对残差进行的新 DT 中。我们将一次又一次地迭代这些步骤,直到损失可以忽略不计。

New Prediction F2(x) = 71 + (0.1 * DT value) + (0.1 * DT value)

        这就是梯度提升算法的全部内容。我希望您对这个主题有更好的理解。我们下一篇文章讨论XgBoost算法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/222147.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(1)(1.9) MSP (version 4.2)

文章目录 前言 1 协议概述 2 配置 3 参数说明 前言 ArduPilot 支持 MSP 协议,可通过任何串行端口进行遥测、OSD 和传感器。这样,ArduPilot 就能将遥测数据发送到 MSP 兼容设备(如大疆护目镜),用于屏幕显示&#x…

C# SixLabors.ImageSharp.Drawing的多种用途

生成验证码 /// <summary> /// 生成二维码 /// </summary> /// <param name"webRootPath">wwwroot目录</param> /// <param name"verifyCode">验证码</param> /// <param name"width">图片宽度</…

Spring Boot学习随笔- 文件上传和下载(在线打开、附件下载、MultipartFile)

学习视频&#xff1a;【编程不良人】2021年SpringBoot最新最全教程 第十二章、文件上传、下载 文件上传 文件上传是指将文件从客户端计算机传输到服务器的过程。 上传思路 前端的上传页面&#xff1a;提交方式必须为post&#xff0c;enctype属性必须为multipart/form-data开发…

在modelsim中查看断言

方法一&#xff1a;单纯的modelsim环境 &#xff08;1&#xff09;编译verilog代码时按照system verilog进行编译 vlog -sv abc.v 或者使用通配符编译所有的.v或者.sv文件 &#xff08; vlog -sv *.sv *.v&#xff09; &#xff08;2&#xff09;仿真命令加一个-assert…

R语言——基本操作(二)

目录 一、矩阵与数组 二、列表 三、数据框 四、因子 五、缺失数据 六、字符串 七、日期和时间 参考 一、矩阵与数组 matrix&#xff1a;创建矩阵&#xff0c;nrow 和 ncol 可以省略&#xff0c;但其值必须满足分配条件&#xff0c;否则会报错 只写一个值则自动分配&…

基于JAVA的海南旅游景点推荐系统 开源项目

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 用户端2.2 管理员端 三、系统展示四、核心代码4.1 随机景点推荐4.2 景点评价4.3 协同推荐算法4.4 网站登录4.5 查询景点美食 五、免责说明 一、摘要 1.1 项目介绍 基于VueSpringBootMySQL的海南旅游推荐系统&#xff…

如何选择适合的UI自动化测试工具

随着软件开发项目的复杂性增加&#xff0c;UI自动化测试成为确保应用程序质量的关键步骤之一。然而&#xff0c;在选择UI自动化测试工具时&#xff0c;开发团队需要考虑多个因素&#xff0c;以确保选取的工具适用于项目需求并提供可靠的测试结果。 1. 了解项目需求 在选择UI自动…

百度侯震宇详解:大模型将如何重构云计算?

12月20日&#xff0c;在2023百度云智大会智算大会上&#xff0c;百度集团副总裁侯震宇以“大模型重构云计算”为主题发表演讲。他强调&#xff0c;AI原生时代&#xff0c;面向大模型的基础设施体系需要全面重构&#xff0c;为构建繁荣的AI原生生态筑牢底座。 侯震宇表示&…

Android蓝牙协议栈fluoride(八) - 音乐播放与控制(1)

概述 通常情况下音乐播放与控制这两个profile(即A2DP和AVRCP)都是同时存在的&#xff0c;A2DP分为Sink(SNK)和Source(SRC)两个角色&#xff0c;ACRVP分为Controller(CT)和Target(TG)两个角色。接下来的几篇博客将详细介绍这两个profile。 Sink和Source、CT和TG都是成对出现的。…

智能优化算法应用:基于梯度算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于梯度算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于梯度算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.梯度算法4.实验参数设定5.算法结果6.参考文献7.MA…

vue中最重要的点,双向数据绑定是什么?

一、什么是双向绑定 我们先从单向绑定切入单向绑定非常简单&#xff0c;就是把Model绑定到View&#xff0c;当我们用JavaScript代码更新Model时&#xff0c;View就会自动更新双向绑定就很容易联想到了&#xff0c;在单向绑定的基础上&#xff0c;用户更新了View&#xff0c;Mo…

多维时序 | MATLAB实现BiTCN-Multihead-Attention多头注意力机制多变量时间序列预测

多维时序 | MATLAB实现BiTCN-Multihead-Attention多头注意力机制多变量时间序列预测 目录 多维时序 | MATLAB实现BiTCN-Multihead-Attention多头注意力机制多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 多维时序 | MATLAB实现BiTCN-Multihea…

vp与vs联合开发-串口通信

模拟串口通信 1.配置虚拟串口驱动 winform 实现串口通信 1.模拟串口和winform程序通信 2.模拟串口通信 控制拍照功能

ubuntu保存分辨率失效解决办法

在VM虚拟机中&#xff0c;遇到修改ubuntu分辨率后&#xff0c;重启后又重置的解决办法。 目前我的ubuntu版本是&#xff1a;ubuntu 18.04.6 版本。 1.首先&#xff0c;在你喜欢的目录建立一个.sh 脚本文件。 终端执行命令&#xff1a;sudo vim xrandr.sh 2.按 i 进入编辑状…

【数据结构】五、数组与广义表

目录 一、定义 二、计算数组元素地址 三、稀疏矩阵快速转置 稀疏矩阵的表示 稀疏矩阵快速转置 四、广义表 一、定义 我们所熟知的一维、二维数组的元素是原子类型。广义表中的元素除了原子类型还可以是另一个线性表。当然所有的数据元素仍然属于同一类型。 这里的数组可…

VSCode安装PYQT5

安装PYQT5 pip install PyQt5 -i https://pypi.tuna.tsinghua.edu.cn/simple pip install PyQt5-tools -i https://pypi.tuna.tsinghua.edu.cn/simple 获得Python环境位置 查看函数库安装位置 pip show 函数库名 通过查询函数库&#xff0c;了解到python安装位置为 C:\User…

在 Kubernetes 上部署 Python 3.7、Chrome 和 Chromedriver(版本 114.0.5735.90)的完整指南

一、构建基础镜像 docker build -f /u01/isi/DockerFile . -t thinking_code.com/xhh/crawler_base_image:v1.0.2docker push thinking_code.com/xhh/crawler_base_image:v1.0.2 二、K8s运行Pod 三、DockerFile文件 # 基于镜像基础 FROM python:3.7# 设置代码文件夹工作目录…

泛微e-cology XmlRpcServlet文件读取漏洞复现

漏洞介绍 泛微新一代移动办公平台e-cology不仅组织提供了一体化的协同工作平台,将组织事务逐渐实现全程电子化,改变传统纸质文件、实体签章的方式。泛微OA E-Cology 平台XmRpcServlet接口处存在任意文件读取漏洞&#xff0c;攻击者可通过该漏洞读取系统重要文件 (如数据库配置…

python编程(1)之通用引脚GPIO使用

在之前的章节中&#xff0c;小编带领大家学习了&#xff1a;如何构建esp32的python开发环境-CSDN博客 今天小编带领大家开始学习python编程的第一节&#xff0c;通用引脚。esp32c3核心板是一个高度集成&#xff0c;功能丰富的模块&#xff0c;来看下他的功能分布&#xff1a; 我…

【小黑嵌入式系统第十一课】μC/OS-III程序设计基础(一)——任务设计、任务管理(创建基本状态内部任务)、任务调度、系统函数

上一课&#xff1a; 【小黑嵌入式系统第十课】μC/OS-III概况——实时操作系统的特点、基本概念&#xff08;内核&任务&中断&#xff09;、与硬件的关系&实现 文章目录 一、任务设计1.1 任务概述1.2 任务的类型1.2.1 单次执行类任务&#xff08;运行至完成型&#…