超维空间S2无人机使用说明书——31、使用yolov8进行目标识别

引言:为了提高yolo识别的质量,提高了yolo的版本,改用yolov8进行物体识别,同时系统兼容了低版本的yolo,包括基于C++的yolov3和yolov4,以及yolov7。

简介,为了提高识别速度,系统采用了GPU进行加速,在使用7W功率的情况,大概可以稳定在20FPS,满功率情况下可以适当提高。

硬件:D435摄像头,Jetson orin nano 8G

环境:ubuntu20.04,ros-noetic, yolov8

步骤一: 启动摄像头,获取摄像头发布的图像话题

roslaunch realsense2_camera rs_camera.launch  

请添加图片描述

没有出现红色报错,出现如下界面,表明摄像头启动成功

请添加图片描述

步骤二:启动yolov8识别节点

roslaunch yolov8_ros yolo_v8.launch 

launch文件如下,参数use_cpu设置为false,因为实际使用GPU加速,不是CPU跑,另外参数pub_topic是yolov8识别到目标后发布出来的物体在镜头中的位置,程序作了修改,直接给出目标物的中心位置,其中参数image_topic是订阅的节点话题,一定要与摄像头发布的实际话题名称对应上。

<?xml version="1.0" encoding="utf-8"?>
<launch><!-- Load Parameter --><param name="use_cpu"           value="false" /><!-- Start yolov8 and ros wrapper --><node pkg="yolov8_ros" type="yolo_v8.py" name="yolov8_ros" output="screen" ><param name="weight_path"       value="$(find yolov8_ros)/weights/yolov8n.pt"/><param name="image_topic"       value="/camera/color/image_raw" /><param name="pub_topic"         value="/object_position" /><param name="camera_frame"      value="camera_color_frame"/><param name="visualize"         value="false"/><param name="conf"              value="0.3" /></node>
</launch>

请添加图片描述

出现如下界面表示yolov8启动成功

请添加图片描述

步骤三:打开rqt工具,查看识别效果

rqt_image_view 

请添加图片描述

等待出现如下界面后,选择yolov8/detection_image查看yolov8识别效果

请添加图片描述

从图中可以看出,在7W功率的情况下,大概在18帧的效果,识别准确度比较高

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/223455.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

c语言的练习---BCD解密

#继续源于c语言翁恺先生 一.分析 初看这道题的时候&#xff0c;可能很多人就想选择放弃&#xff0c;但这道题实在不是考察我们对于编码的能力&#xff1b;而是我们的数学能力。 就拿它的输入样例---18&#xff0c;来举例。 我们来看---在十进制中&#xff0c;是18D&#xf…

锯齿云服务器租赁使用教程

首先登陆锯齿云账号 网盘上传数据集与代码 随后我们需要做的是将所需要的数据集与代码上传到网盘&#xff08;也可以直接在租用服务器后将数据集与代码传到服务器的硬盘上&#xff0c;但这样做会消耗大量时间&#xff0c;造成资源浪费&#xff09; 点击工作空间&#xff1a;…

移除石子使总数最小(LeetCode日记)

LeetCode-1962-移除石子使总数最小 题目信息: 给你一个整数数组 p i l e s piles piles &#xff0c;数组 下标从 0 0 0 开始 &#xff0c;其中 p i l e s [ i ] piles[i] piles[i] 表示第 i i i 堆石子中的石子数量。另给你一个整数 k k k &#xff0c;请你执行下述操作…

无需改动现有网络,企业高速远程访问内网Linux服务器

某企业为数据治理工具盒厂商&#xff0c;帮助客户摆脱数据问题困扰、轻松使用数据&#xff0c;使得客户可以把更多精力投入至数据应用及业务赋能&#xff0c;让数据充分发挥其作为生产要素的作用。 目前&#xff0c;该企业在北京、南京、西安、武汉等地均设有产研中心&#xff…

docker构建镜像及项目部署

文章目录 练习资料下载一、docker基础1. 基本概念2. docker常见命令3. 命令别名4. 数据卷 二、docker自定义镜像1. 了解镜像结构2. 了解Dockerfile3. 构建Dockerfile文件&#xff0c;完成自定义镜像 三、网络1. docker常见网络命令2. docker自带虚拟网络3. 自定义网络 四、dock…

运维大模型探索之 Text2PromQL 问答机器人

作者&#xff1a;陈昆仪&#xff08;图杨&#xff09; 大家下午好&#xff0c;我是来自阿里云可观测团队的算法工程师陈昆仪。今天分享的主题是“和我交谈并获得您想要的PromQL”。今天我跟大家分享在将AIGC技术运用到可观测领域的探索。 今天分享主要包括5个部分&#xff1a;…

【Python】基于flaskMVT架构与session实现博客前台登录登出功能

目录 一、MVT说明 1.Model层 2.View层 3.Template层 二、功能说明 三、代码框架展示 四、具体代码实现 models.py 登录界面前端代码 博客界面前端代码&#xff08;profile.html&#xff09; main.py 一、MVT说明 MVT架构是Model-View-Template的缩写&#xff0c;是…

HarmonyOS构建第一个JS应用(FA模型)

构建第一个JS应用&#xff08;FA模型&#xff09; 创建JS工程 若首次打开DevEco Studio&#xff0c;请点击Create Project创建工程。如果已经打开了一个工程&#xff0c;请在菜单栏选择File > New > Create Project来创建一个新工程。 选择Application应用开发&#xf…

SpringBoot3-基础特性

文章目录 自定义 banner自定义 SpringApplicationFluentBuilder APIProfiles指定环境环境激活环境包含Profile 分组Profile 配置文件 外部化配置配置优先级 外部配置导入配置属性占位符 单元测试-JUnit5测试组件测试注解断言嵌套测试参数化测试 自定义 banner banner 就是启动…

计算机毕业设计 基于SpringBoot的房屋租赁管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

嵌入式开发中利用strstr()对部分模块回传数据进行解析的问题(坑)

受到以下博文的启发&#xff1a; https://www.cnblogs.com/yup1983/p/11337837.html 验证&#xff1a; 最近通过ESP8266远程控制小车&#xff0c;在wifi回传的数据解析过程中遇到标题所述的烦恼 如上截图所示&#xff0c;数据回传过程中会接受到‘\0’字节对应的ASCII码为0x0…

初识QT(上篇):What Qt

初识QT&#xff08;上篇&#xff09;&#xff1a;What Qt 前言 & 说明前言说明 初识QT1.1 QT的what1. 介绍2. 发展历程3. QT架构的主要内容4.QT的常用模块 1.2 QT的 why1. QT的核心机制 下篇笔记链接 前言 & 说明 前言 前言&#xff1a; 之前说要share的qt相关知识&am…

7种常见的网络安全设备及其功能

网络安全设备在现代网络环境中起着至关重要的作用&#xff0c;帮助保护个人和组织免受恶意攻击。本文将介绍7种常见的网络安全设备&#xff0c;包括防火墙、入侵检测系统、反病毒软件、数据加密设备、虚拟私人网络、安全信息和事件管理系统以及网络访问控制设备&#xff0c;并详…

Guava的TypeToken在泛型编程中的应用

第1章&#xff1a;引言 在Java世界里&#xff0c;泛型是个相当棒的概念&#xff0c;能让代码更加灵活和类型安全。但是&#xff0c;泛型也带来了一些挑战&#xff0c;特别是当涉及到类型擦除时。这就是TypeToken大显身手的时候&#xff01; 作为Java程序员的咱们&#xff0c;…

Flink 数据序列化

为 Flink 量身定制的序列化框架 大家都知道现在大数据生态非常火&#xff0c;大多数技术组件都是运行在JVM上的&#xff0c;Flink也是运行在JVM上&#xff0c;基于JVM的数据分析引擎都需要将大量的数据存储在内存中&#xff0c;这就不得不面临JVM的一些问题&#xff0c;比如Ja…

Python算法例27 对称数

1. 问题描述 对称数是一个旋转180后&#xff08;倒过来&#xff09;看起来与原数相同的数&#xff0c;找到所有长度为n的对称数。 2. 问题示例 给出n2&#xff0c;返回[&#xff02;11&#xff02;&#xff0c;&#xff02;69&#xff02;&#xff0c;&#xff02;88&#x…

【JAVA】分布式链路追踪技术概论

目录 1.概述 2.基于日志的实现 2.1.实现思想 2.2.sleuth 2.2.可视化 3.基于agent的实现 4.联系作者 1.概述 当采用分布式架构后&#xff0c;一次请求会在多个服务之间流转&#xff0c;组成单次调用链的服务往往都分散在不同的服务器上。这就会带来一个问题&#xff1a;…

计算机网络 运输层下 | TCP概述 可靠传输 流量控制 拥塞控制 连接管理

文章目录 3 运输层主要协议 TCP 概述3.1 TCP概述 特点3.2 TCP连接RSVP资源预留协议 4 TCP可靠传输4.1 可靠传输工作原理4.1.1 停止等待协议4.1.2 连续ARQ协议 4.2 TCP可靠通信的具体实现4.2.1 以字节为单位的滑动窗口4.2.2 超时重传时间的选择4.2.3 选择确认SACK 5 TCP的流量控…

mac m1芯片 pytorch安装及gpu性能测试

pytorch 使用mac的m1芯片进行模型训练。 #小结&#xff1a;在数据量小和模型参数少&#xff0c;batch_size小时&#xff0c;cpu训练更快&#xff08;原因&#xff1a;每次训练时数据需要放入GPU中&#xff0c;由于batch_size小。数据放入gpu比模型计算时间还长&#xff09; 在…

(Mac上)使用Python进行matplotlib 画图时,中文显示不出来

【问题描述】 ①报错确缺失字体&#xff1a; ②使用matplotlib画图&#xff0c;中文字体显示不出来 【问题思考】 在网上搜了好多&#xff0c;关于使用python进行matplotlib画图字体显示不出来的&#xff0c;但是我试用了下&#xff0c;对我来说都没有。有些仅使用于windows系…