讲座思考 | 周志华教授:新型机器学习神经元模型的探索

12月22日,有幸听了南京大学周志华教授题为“新型机器学习神经元模型的探索”的讲座。现场热闹非凡,大家像追星一样拿着“西瓜书”找周教授签名。周教授讲得依旧循循善诱,由浅入深,听得我很入迷,故作此记。

周教授首先就人工智能领域火热发展的原因提出了自己的见解,强调了人工智能中基础算法相较于算力的基础性作用:算力提升论或为误解,应当是算法带来基础性突破,然后算力的提升才能在其后一段时间内放大算法突破带来的红利。 周教授随后举例说明,BP算法在深层神经网络里存在着梯度消失问题,而2006年随着Hinton的深层模型问世,深度学习一直在近二十年的时间内火热不已,并随着算力不断提升在不同领域有着越来越亮眼的表现。

接着周教授乘势抛出了两个贯穿本次演讲始终的公式:“神经网络=神经网络模型+学习算法”,而神经网络模型=神经元模型+网络结构。周教授解释道,学习算法指的就是BP算法这种历久弥新的算法,而本次演讲的重点——神经元模型,指的就是受生物神经元接受多个电信号输入,达到阈值后激活并输出的启发,所设计的机器学习神经元数学模型,即著名的M-P神经元模型,形如:

y = f ( ∑ i = 1 n w i x i − θ ) y = f(\sum_{i=1}^n w_i x_i - \theta) y=f(i=1nwixiθ)

生物神经元

周教授指出,关于神经网络的大多数研究都注重在网络结构上做设计,而关于神经元模型的研究甚少,甚至问世近80年的M-P神经元模型到今天仍然遍地在用。此外,近来关于神经元模型的研究又开始有所浮现,讨论能否有别的神经元模型可以使用。在这样的背景下,周教授团队着手了新型神经元模型的相关研究。

周教授首先分享了他们团队在分岔脉冲神经网络 (Bifurcation Spiking Neural Network) 方面的研究1

首先,脉冲神经网络中一种被广泛研究的神经元模型叫做Leaky integrate and fire (LIF) 模型,LIF神经元模型除了考虑信号的传递和神经元激活,还考虑了信号传递的时间累计过程,其一般形式为:

τ d u d t = − u + R f ( I ( t ) ) \tau \frac{du}{dt} = -u + R f(\bold{I(t)}) τdtdu=u+Rf(I(t))

周教授团队从动力系统视角进行分析,发现基于LIF神经元模型的脉冲神经网络的解空间是分开的三部分,由参数 τ \tau τ决定。因此提出了分岔脉冲神经网络(Bifurcation Spiking Neural Network, BSNN),实现了自适应动力系统,将解空间连起来,解决了解空间分岔的问题,使得解空间可达。

周教授进一步分享了他们团队提出的一种生物上合理且具有灵活的突触可塑性的全新神经元模型:Flexible Transmitter (FT) Model 2.
这种FT神经元模型参考了生物神经元的神经递质传递过程,尤其是突触的收缩和发育过程,神经递质不仅起到信号传递作用,还会控制突触发育和收缩,使得神经递质的接受量相应增大和缩小,这一过程如下图所示。

生物神经元中突触的神经递质传递与突触伸缩过程

FT神经元模型可以表示为:

( s t , r t ) = f ( w x t , v r t − 1 ) (s_t,r_t) = f(wx_t,vr_{t-1}) (st,rt)=f(wxt,vrt1)

用复数进行数学上的抽象可表示为:

s t + r t i = f ( w x t , v r t − 1 i ) s_t +r_t \bold{i} = f(wx_t,vr_{t-1} \bold{i} ) st+rti=f(wxt,vrt1i)

周教授强调,这种FT神经元模型的能力更加强大,因为M-P神经元模型只是FT神经元模型的一个子集。

一种简单基于FT神经元模型的FT神经网络 (FTNet) 同样也被展示:

s t + r t i = f ( W x t , V r t − 1 i ) \bold{s_t} +\bold{r_t i} = f( \bold{Wx}_t, \bold{Vr}_{t-1} \bold{i} ) st+rti=f(Wxt,Vrt1i)

周教授认为,这种新型FT神经元模型和基于其上的FT神经网络具有更加强大的能力,可以解决以前基于M-P神经元的神经网络无法解决的问题。周教授团队在一些简单的任务上和常见的神经网络进行对比,例如在MNIST数据集上,和CNN、RNN、基于M-P神经元的FCN、基于脉冲神经网络的SNN等,结果显示基于FT神经元的神经网络具有最高的Accuracy。但这并非没有代价,周教授毫不掩饰地指出了FT神经网络存在的问题,即更多的计算时间。

演讲结束后,老师同学们都很感兴趣,不断提出自己的疑惑并向周教授请教。而周教授也非常耐心、坦诚地回答,整个问答环节持续了超过半小时。


  1. Zhang, Shao-Qun, Zhao-Yu Zhang, and Zhi-Hua Zhou. “Bifurcation spiking neural network.” The Journal of Machine Learning Research 22.1 (2021): 11459-11479. ↩︎

  2. Zhang, Shao-Qun, and Zhi-Hua Zhou. “Flexible transmitter network.” Neural Computation 33.11 (2021): 2951-2970. ↩︎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/225705.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RocketMQ系统性学习-RocketMQ高级特性之消息大量堆积处理、部署架构和高可用机制

🌈🌈🌈🌈🌈🌈🌈🌈 【11来了】文章导读地址:点击查看文章导读! 🍁🍁🍁🍁🍁🍁&#x1f3…

kasan

目录 主要参考文章:linux之kasan原理及解析-CSDN博客 kasn大致原理 shadow memory映射建立 kasn检查代码具体实现 kasn大致原理 之前使用slub debug定位重复释放,内存越界等问题时比较麻烦。无法对异常行为进行实时捕捉。看网上说kasan能做到这一点…

etcd-workbench一款免费好用的ETCD客户端,支持SSHTunnel、版本对比等功能

介绍 今天推荐一款完全免费的ETCD客户端,可以私有化部署: etcd-workbench 开源地址:https://github.com/tzfun/etcd-workbench Gitee地址:https://gitee.com/tzfun/etcd-workbench 下载 本地运行 从 官方Release 下载最新版的 jar 包&am…

【FPGA】分享一些FPGA视频图像处理相关的书籍

在做FPGA工程师的这些年,买过好多书,也看过好多书,分享一下。 后续会慢慢的补充书评。 【FPGA】分享一些FPGA入门学习的书籍【FPGA】分享一些FPGA协同MATLAB开发的书籍 【FPGA】分享一些FPGA视频图像处理相关的书籍 【FPGA】分享一些FPGA高速…

QT、C++实验室管理系统

一、需求介绍: 题目:基于Qt的实验室管理系统的设计 项目命名以LabSystem姓名拼音首字母(例如: LabSystemwXC) 功能要求: 一,基本必要功能: 1,使用QSQLITE数据库完成数据库的设计。 2,注册功能:包含学生注册&#xff0…

哪个牌子的猫冻干好又安全?分享安全的主食冻干猫粮牌子

近几年,冻干猫粮在宠物圈内非常流行,许多品牌都推出了冻干猫粮。在所有的猫食品中,冻干无疑是最具营养、动物蛋白含量最高的食品之一。冻干作为现在宠物圈最火的猫食品,受到了众多猫友们的喜爱和追捧。但有些铲屎官在选择冻干猫粮…

axios进行图片上传组件封装

文章目录 前言图片上传接口(axios通信)图片上传使用upload上传头像效果展示总结 前言 node项目使用 axios 库进行简单文件上传的模块封装。 图片上传接口(axios通信) 新建upload.js文件,定义一个函数,该函数接受一个上传路径和一…

简单的喷淋实验(2):(1)根据土壤湿度自动控制喷淋开关;(2)根据光照强度控制风扇以及灯的开关---嵌入式实训

目录 简单的喷淋实验(2): (1)根据土壤湿度自动控制喷淋开关; (2)根据光照强度控制风扇以及灯的开关---嵌入式实训 任务2: 具体过程: 所用的头文件: data_global.h …

【接口测试】Postman(一)--接口测试知识准备 _

1.0 前言 ​ 应用程序编程接口(Application Programming Interface, API)是这些年来最流行的技术之一,强大的Web应用程序和领先的移动应用程序都离不开后端强大的API。API技术的应用给系统开发带来了便利,但也对测试人员提出了更高…

PYTHON基础:最小二乘法

最小二乘法的拟合 最小二乘法是一种常用的统计学方法,用于通过在数据点中找到一条直线或曲线,使得这条直线或曲线与所有数据点的距离平方和最小化。在线性回归中,最小二乘法被广泛应用于拟合一条直线与数据点之间的关系。 对于线性回归&…

k8s的二进制部署(一)

k8s的二进制部署:源码包部署 环境: k8smaster01: 20.0.0.71 kube-apiserver kube-controller-manager kube-schedule ETCD k8smaster02: 20.0.0.72 kube-apiserver kube-controller-manager kube-schedule Node节点01: 20.0.0.73 kubelet kube-pr…

Vue学习之第一、二章——Vue核心与组件化编程

第一章. Vue核心 1.1 Vue简介 1.1.1 官网 英文官网: https://vuejs.org/中文官网: https://cn.vuejs.org/ 1.1.2 Vue特点 遵循 MVVM 模式编码简洁, 体积小, 运行效率高, 适合移动/PC 端开发它本身只关注 UI, 也可以引入其它第三方库开发项目 1.2 初始Vue 这里可以参考&a…

如何在vscode当中预览html文件运行结果

如何在vscode当中预览html文件运行结果 下载拓展内容打开拓展界面下载拓展 运行html文件参考内容 上一篇文章当中讲了如何实现在网页上对html文件的预览,但是这样子其实在运行代码的过程当中效果比较差,那么还需要可以实时预览运行的结果 下载拓展内容 打开拓展界面 下载拓展 …

Springboot整合MVC进阶篇

一、概述 1.1SpringBoot整合SpringMVC配置 SpringBoot对SpringMVC的配置主要包括以下几个方面: 自动配置:SpringBoot会自动配置一个嵌入式的Servlet容器(如Tomcat),并为我们提供默认的SpringMVC配置。这样我们无需手动…

华清远见嵌入式学习——ARM——作业3

作业要求: 代码效果图: 代码: led.h #ifndef __LED_H__ #define __LED_H__#define RCC_GPIO (*(unsigned int *)0x50000a28) #define GPIOE_MODER (*(unsigned int *)0x50006000) #define GPIOF_MODER (*(unsigned int *)0x50007000) #defi…

12.26代码复现

# 建立矩阵模型 m Model(specification) x m.addMVar((48,),vtypeGRB.BINARY,namex) y m.addMVar((240,),lb-GRB.INFINITY,namey) u m.addMVar((48,),vtypeGRB.BINARY,nameu)以下是一个简单的示例代码,演示了如何使用 Python 和 Gurobi 库来实现 KKT 方法求解列…

推荐一个vscode看着比较舒服的主题:Dark High Contrast

主题名称:Dark High Contrast (意思就是,黑色的,高反差的) 步骤:设置→Themes→Color Theme→Dark High Contrast 效果如下: 感觉这个颜色的看起来比较舒服。

【四】【C语言\动态规划】地下城游戏、按摩师、打家劫舍 II,三道题目深度解析

动态规划 动态规划就像是解决问题的一种策略,它可以帮助我们更高效地找到问题的解决方案。这个策略的核心思想就是将问题分解为一系列的小问题,并将每个小问题的解保存起来。这样,当我们需要解决原始问题的时候,我们就可以直接利…

汽车项目管理

项目节点: MR (Management Review)——管理层评审 KO (Kick Off)——项目正式启动 SI (Strategy Intent)——战略意图 SC (Strategy Confirmation)——战略确认 PA (Program Approval)——项目批准 PR (Product Readiness)——产品就绪 VP (Verification Prototype)…

00-Git 应用

Git 应用 一、Git概述 1.1 什么是Git git 是一个代码协同管理工具,也称之为代码版本控制工具,代码版本控制或管理的工具用的最多的: svn、 git。 SVN 是采用的 同步机制,即本地的代码版本和服务器的版本保持一致(提…