Pytorch实现之特征损失与残差结构稳定GAN训练,并训练自己的数据集

简介

简介:生成器和鉴别器分别采用了4个新颖设计的残差结构实现,同时在损失中结合了鉴别器层的特征损失来提高模型性能。

论文题目:Image Generation by Residual Block Based Generative Adversarial Networks(基于残留块的生成对抗网络产生图像)

会议:2022 IEEE International Conference on Consumer Electronics (ICCE)

摘要:生成对抗网络是一种用于解决人工智能任务的流行深度学习技术,并且已广泛研究并应用于处理图像,声音,文本等。 特别是,在图像处理领域(例如图像样式传输,图像恢复,图像超分辨率等)采用了生成对抗网络。 尽管生成的对抗网络在图像生成方面表现出色,但训练过程通常是不稳定和受过训练的模型崩溃的,许多生成的图像可能包含相同的颜色或纹理模式。 在本文中,修改了生成器和鉴别器的网络,并将残留块添加到生成对抗网络体系结构中,以学习更好的图像功能。 为了减少训练过程中图像功能的丢失并获得更多功能以稳定图像生成,我们使用功能匹配来最大程度地减少真实图像和生成的图像之间的特征损失,以进行稳定训练。 在实验中,可以通过采用我们提出的方法来提高性能,这也比某些最先进的方法更好。

模型结构

总体架构

生成器残差架构与鉴别器残差架构

class ResidualBlockG(nn.Module):def __init__(self, in_channels, out_channels, scale_factor=2):super(ResidualBlockG, self).__init__()self.path1_conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)self.upsample = nn.Upsample(scale_factor=scale_factor, mode='bilinear', align_corners=True)self.path1_conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)self.path2_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)self.prelu = nn.PReLU()def forward(self, x):path1 = self.path1_conv1(x)path1 = self.upsample(path1)path1 = self.path1_conv2(path1)path2 = self.path2_conv(x)path2 = self.upsample(path2)out = self.prelu(path1 + path2)return out# 定义鉴别器的残差块
class ResidualBlockD(nn.Module):def __init__(self, in_channels, out_channels, scale_factor=2):super(ResidualBlockD, self).__init__()sel

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/22675.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

后“智驾平权”时代,谁为安全冗余和体验升级“买单”

线控底盘,正在成为新势力争夺下一个技术普及红利的新赛点。 尤其是进入2025年,比亚迪、长安等一线传统自主品牌率先开启高阶智驾的普及战,加上此前已经普及的智能座舱,舱驾智能的「科技平权」进一步加速行业启动「线控底盘」上车窗…

【Node.js】express框架

目录 1初识express框架 2 初步使用 2.1 安装 2.2 创建基本的Web服务器 2.3 监听方法 2.3.1 监听get请求 2.3.2 监听post请求 2.4 响应客户端 2.5 获取url中的参数(get) 2.5.1 获取查询参数 2.5.2 获取动态参数 2.6 托管静态资源 2.6.1 挂载路径前缀 2.6.2 托管多…

树形DP(树形背包+换根DP)

树形DP 没有上司的舞会 家常便饭了&#xff0c;写了好几遍&#xff0c;没啥好说的&#xff0c;正常独立集问题。 int head[B]; int cnt; struct node {int v,nxt; }e[B<<1]; void modify(int u,int v) {e[cnt].nxthead[u];e[cnt].vv;head[u]cnt; } int a[B]; int f[B]…

REACT--组件通信

组件之间如何进行通信&#xff1f; 组件通信 组件的通信主要借助props传递值 分为整体接收、解构接收 整体接收 import PropTypes from prop-types;//子组件 function Welcome(props){return (<div>hello Welcome,{props.count},{props.msg}</div>) }// 对 We…

【排序算法】六大比较类排序算法——插入排序、选择排序、冒泡排序、希尔排序、快速排序、归并排序【详解】

文章目录 六大比较类排序算法&#xff08;插入排序、选择排序、冒泡排序、希尔排序、快速排序、归并排序&#xff09;前言1. 插入排序算法描述代码示例算法分析 2. 选择排序算法描述优化代码示例算法分析 3. 冒泡排序算法描述代码示例算法分析与插入排序对比 4. 希尔排序算法描…

纠错检索增广生成论文

一、摘要 动机&#xff1a;RAG严重依赖于检索文档的相关性&#xff0c;如果检索出错&#xff0c;那么LLM的输出结果也会出现问题 解决方案&#xff1a;提出纠正性检索增强生成&#xff08;CRAG&#xff09;即设计一个轻量级的检索评估器&#xff0c;用来评估针对某个查询检索…

Java NIO与传统IO性能对比分析

Java NIO与传统IO性能对比分析 在Java中&#xff0c;I/O&#xff08;输入输出&#xff09;操作是开发中最常见的任务之一。传统的I/O方式基于阻塞模型&#xff0c;而Java NIO&#xff08;New I/O&#xff09;引入了非阻塞和基于通道&#xff08;Channel&#xff09;和缓冲区&a…

easelog(1)基础C++日志功能实现

EaseLog(1)基础C日志功能实现 Author: Once Day Date: 2025年2月22日 一位热衷于Linux学习和开发的菜鸟&#xff0c;试图谱写一场冒险之旅&#xff0c;也许终点只是一场白日梦… 漫漫长路&#xff0c;有人对你微笑过嘛… 注&#xff1a;本简易日志组件代码实现参考了Google …

Vue面试2

1.跨域问题以及如何解决跨域 跨域问题&#xff08;Cross-Origin Resource Sharing, CORS&#xff09;是指在浏览器中&#xff0c;当一个资源试图从一个不同的源请求另一个资源时所遇到的限制。这种限制是浏览器为了保护用户安全而实施的一种同源策略&#xff08;Same-origin p…

MongoDB应用设计调优

应用范式设计 什么是范式 数据库范式概念是数据库技术的基本理论&#xff0c;几乎是伴随着数据库软件产品的推出而产生的。在传统关系型数据库领域&#xff0c;应用开发中遵循范式是最基本的要求。但随着互联网行业的发展&#xff0c;NoSQL开始变得非常流行&#xff0c;在许多…

Mac安装配置Tomcat 8

一、官网下载 Index of /disthttps://archive.apache.org/dist/ 1、进入界面如下&#xff1a; 2、我们找到Tomcat文件夹并进入 3、找到Tomcat 8并打开 4、找到对应的版本打开 5、打开bin 6、找到“apache-tomcat-8.5.99.tar.gz”并下载 二、配置Tomcat 1、解压已经下载好的…

【论文精读】VLM-AD:通过视觉-语言模型监督实现端到端自动驾驶

论文地址&#xff1a; VLM-AD: End-to-End Autonomous Driving through Vision-Language Model Supervision 摘要 人类驾驶员依赖常识推理来应对复杂多变的真实世界驾驶场景。现有的端到端&#xff08;E2E&#xff09;自动驾驶&#xff08;AD&#xff09;模型通常被优化以模仿…

百度搜索,能否将DeepSeek变成“内功”?

最近&#xff0c;所有的云平台和主流APP都在努力接入DeepSeek。其中&#xff0c;搜索类APP与搜索引擎更是“战况激烈”。那么问题来了&#xff0c;接入DeepSeek已经变成了标准配置&#xff0c;到底应该如何做出差异化&#xff1f;接入DeepSeek这件事能不能实现11大于2的效果&am…

Flask实现高效日志记录模块

目录 一. 简介&#xff1a; 1. 为什么需要请求日志 二. 日志模块组成 1. 对应日志表创建&#xff08;包含日志记录的关键字段&#xff09; 2. 编写日志记录静态方法 3. 在Flask中捕获请求日志 4. 捕获异常并记录错误日志 5. 编写日志接口数据展示 6. 写入数据展…

25轻化工程研究生复试面试问题汇总 轻化工程专业知识问题很全! 轻化工程复试全流程攻略 轻化工程考研复试真题汇总

轻化工程复试心里没谱&#xff1f;学姐带你玩转面试准备&#xff01; 是不是总觉得老师会问些刁钻问题&#xff1f;别焦虑&#xff01;其实轻化工程复试套路就那些&#xff0c;看完这篇攻略直接掌握复试通关密码&#xff01;文中有重点面试题可直接背~ 目录 一、这些行为赶紧避…

查看已经安装的Python库,高效管理自己的Python开发环境

在日常的Python开发中&#xff0c;掌握如何管理和查看已经安装的库是非常重要的。这不仅能帮助你了解当前项目的依赖关系&#xff0c;还能避免出现版本冲突等问题。在这篇文章中&#xff0c;我们将详细介绍查看已安装Python库的方法&#xff0c;并提供一些实用的工具和技巧。 …

Selenium实战案例1:论文pdf自动下载

在上一篇文章中&#xff0c;我们介绍了Selenium的基础用法和一些常见技巧。今天&#xff0c;我们将通过中国科学&#xff1a;信息科学网站内当前目录论文下载这一实战案例来进一步展示Selenium的web自动化流程。 目录 中国科学&#xff1a;信息科学当期目录论文下载 1.网页内…

Visual Studio Code 2025 安装与高效配置教程

一、软件简介与下载 1. Visual Studio Code 是什么&#xff1f; Visual Studio Code&#xff08;简称VS Code&#xff09;是微软推出的免费开源代码编辑器&#xff0c;支持 智能代码补全、Git集成、插件扩展 等功能&#xff0c;适用于前端开发、Python、Java等多种编程场景。…

工业路由器和工业交换机,打造高效稳定的工业网络?

工业路由器和工业交换机各有千秋&#xff0c;但如何将它们完美结合&#xff0c;构建稳定高效的工业网络&#xff1f;答案就在这里&#xff01; 工业物联网&#xff08;IIoT&#xff09;是高效、稳定的工业网络成为智慧工厂、工业自动化和远程监控等场景的基础支撑。工业路由器…

DeepSeek 助力 Vue 开发:打造丝滑的二维码生成(QR Code)

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;今天给大家分享一篇文章&#xff01;并提供具体代码帮助大家深入理解&#xff0c;彻底掌握&#xff01;创作不易&#xff0c;如果能帮助到大家或者给大家一些灵感和启发&#xff0c;欢迎收藏关注哦 &#x1f495; 目录 Deep…