共享单车之数据分析

文章目录

  • 第1关:统计共享单车每天的平均使用时间
  • 第2关:统计共享单车在指定地点的每天平均次数
  • 第3关:统计共享单车指定车辆每次使用的空闲平均时间
  • 第4关:统计指定时间共享单车使用次数
  • 第5关:统计共享单车线路流量


第1关:统计共享单车每天的平均使用时间

任务描述
本关任务:使用Hbase的MapReduce对已经存在 Hbase 的共享单车运行数据进行分析,统计共享单车每天的平均使用时间,其中共享单车运行数据在Hbase的t_shared_bicycle表中(表结构可在编程要求中进行查看)。

相关知识
为了完成本关任务,你需要掌握:

如何配置Hbase的MapReduce类;
如何使用Hbase的MapReduce进行数据分析。
如何配置Hbase的MapReduce类
MapReduce是运行在Job上的一个并行计算框架,分为Map节点和Reduce节点。

Hbase提供了org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil的initTableMapperJob和initTableReducerJob两个方法来完成MapReduce的配置。

initTableMapperJob 方法:

/**
*在提交TableMap作业之前使用它。 它会适当地设置
* 工作。
*
* @param table要读取的表名。
* @param scan具有列,时间范围等的扫描实例。
* @param mapper要使用的mapper类。
* @param outputKeyClass输出键的类。
* @param outputValueClass输出值的类。
* @param job当前要调整的工作。 确保传递的作业是
*携带所有必要的HBase配置。
* @throws IOException设置细节失败。
*/
public static void initTableMapperJob(String table, Scan scan,
Class<? extends TableMapper> mapper, Class<?> outputKeyClass,
Class<?> outputValueClass, Job job)
throws IOException
/ **
initTableReducerJob 方法:

/**
*在提交TableReduce作业之前使用它。 它会
*适当设置JobConf。
*
* @param table输出表。
* @param reducer要使用的reducer类。
* @param job当前要调整的工作。
* @throws IOException确定区域计数失败时。
*/
public static void initTableReducerJob(String table,
Class<? extends TableReducer> reducer, Job job)
throws IOException

如何使用Hbase的MapReduce进行数据分析
下面我们以统计每个城市的酒店个数的例子来介绍MapReduce的Map节点和Reduce节点:

Map节点执行类需要继承抽象类TableMapper,实现其map方法,结构如下:

public static class MyMapper extends TableMapper<Text, DoubleWritable> {
@Override
protected void map(ImmutableBytesWritable rowKey, Result result, Context context) {

}

}
在 map 方法中可从输入表(原数据表)得到行数据,最后向 Reduce 节点 输出键值对(key/value) 。

String cityId = Bytes.toString(result.getValue(“cityInfo”.getBytes(), “cityId”.getBytes()));
DoubleWritable i = new DoubleWritable(1);
context.write(new Text(cityId),i);
下面介绍Reduce节点,Reduce节点执行类需要继承抽象类TableReducer,实现其reduce方法:

public static class MyTableReducer extends TableReducer<Text, DoubleWritable, ImmutableBytesWritable> {
@Override
public void reduce(Text key, Iterable values, Context context) {

}
}
在reduce方法里会接收map 方法里相同key 的集合,最后把结果存到输出到表里。

double sum = 0;
for (DoubleWritable num:values){
sum += num.get();
}
Put put = new Put(Bytes.toBytes(key.toString()));
put.addColumn(“total_infos”.getBytes(),“total”.getBytes(),Bytes.toBytes(String.valueOf(sum)));
context.write(null,put);//initTableReducerJob 设置了表名所以在这里无需设置了
编程要求
在右侧代码窗口完成代码编写:

MapReduce类已经配置好,只需完成MapReduce的数据分析;

在map方法中,获取输入表t_shared_bicycle的相关信息,计算出使用时间=结束时间 - 开始时间,并把使用时间和开始时间的日期传给reduce

在reduce方法中通过使用时间和开始时间的日期计算共享单车每天平均使用时间,并把每天平均使用时间,四舍五入保留两位有效数字,存入到列族为info,字段为avgTime,ROWKEY 为avgTime的表里。

t_shared_bicycle表结构如下:

列族名称 字段 对应的文件的描述 ROWKEY (格式为:骑行id)
info beginTime 开始时间 trip_id
info endTime 结束时间 trip_id
info bicycleId 车辆id trip_id
info departure 出发地 trip_id
info destination 目的地 trip_id
info city 所在城市 trip_id
info start_longitude 开始经度 trip_id
info stop_longitude 结束经度 trip_id
info start_latitude 开始纬度 trip_id
info stop_latitude 结束纬度 trip_id
测试说明
平台会对你编写的代码进行测试,若是与预期输出相同,则算通关。

开始你的任务吧,祝你成功!
示例代码如下:

package com.educoder.bigData.sharedbicycle;
import java.io.IOException;
import java.text.ParseException;
import java.util.Collection;
import java.util.Date;
import java.util.HashMap;
import java.util.Locale;
import java.util.Map;
import java.util.Scanner;
import java.math.RoundingMode;
import java.math.BigDecimal;
import org.apache.commons.lang3.time.DateFormatUtils;
import org.apache.commons.lang3.time.FastDateFormat;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.util.Tool;
import com.educoder.bigData.util.HBaseUtil;
/*** 统计共享单车每天的平均使用时间*/
public class AveragetTimeMapReduce extends Configured implements Tool {public static final byte[] family = "info".getBytes();public static class MyMapper extends TableMapper<Text, BytesWritable> {protected void map(ImmutableBytesWritable rowKey, Result result, Context context)throws IOException, InterruptedException {/********** Begin *********/long beginTime = Long.parseLong(Bytes.toString(result.getValue(family, "beginTime".getBytes())));long endTime = Long.parseLong(Bytes.toString(result.getValue(family, "endTime".getBytes())));// 转化为yyyy-MM-ddString format = DateFormatUtils.format(beginTime, "yyyy-MM-dd", Locale.CHINA);// 计算时间long useTime = endTime - beginTime;// 拼装value ,包含日期 + 使用时间BytesWritable bytesWritable = new BytesWritable(Bytes.toBytes(format + "_" + useTime));context.write(new Text("avgTime"), bytesWritable);/********** End *********/}}public static class MyTableReducer extends TableReducer<Text, BytesWritable, ImmutableBytesWritable> {@Overridepublic void reduce(Text key, Iterable<BytesWritable> values, Context context)throws IOException, InterruptedException {/********** Begin *********/double sum = 0;int length = 0;Map<String, Long> map = new HashMap<String, Long>();for (BytesWritable price : values) {byte[] copyBytes = price.copyBytes();String string = Bytes.toString(copyBytes);String[] split = string.split("_");if (map.containsKey(split[0])) {Long integer = map.get(split[0]) + Long.parseLong(split[1]);map.put(split[0], integer);} else {map.put(split[0], Long.parseLong(split[1]));}}// 统计map value平均值Collection<Long> values2 = map.values();for (Long i : values2) {length++;sum += i;}BigDecimal decimal = new BigDecimal(sum / length /1000);BigDecimal setScale = decimal.setScale(2, RoundingMode.HALF_DOWN);Put put = new Put(Bytes.toBytes(key.toString()));put.addColumn(family, "avgTime".getBytes(), Bytes.toBytes(setScale.toString()));context.write(null, put);// initTableReducerJob 设置了 表名所以在这里无需设置了/********** End *********/}}public int run(String[] args) throws Exception {// 配置JobConfiguration conf = HBaseUtil.conf;// Scanner sc = new Scanner(System.in);// String arg1 = sc.next();// String arg2 = sc.next();String arg1 = "t_shared_bicycle";String arg2 = "t_bicycle_avgtime";try {HBaseUtil.createTable(arg2, new String[] { "info" });} catch (Exception e) {// 创建表失败e.printStackTrace();}Job job = configureJob(conf, new String[] { arg1, arg2 });return job.waitForCompletion(true) ? 0 : 1;}private Job configureJob(Configuration conf, String[] args) throws IOException {String tablename = args[0];String targetTable = args[1];Job job = new Job(conf, tablename);Scan scan = new Scan();scan.setCaching(300);scan.setCacheBlocks(false);// 在mapreduce程序中千万不要设置允许缓存// 初始化Mapreduce程序TableMapReduceUtil.initTableMapperJob(tablename, scan, MyMapper.class, Text.class, BytesWritable.class, job);// 初始化ReduceTableMapReduceUtil.initTableReducerJob(targetTable, // output tableMyTableReducer.class, // reducer classjob);job.setNumReduceTasks(1);return job;}
}

在这里插入图片描述

第2关:统计共享单车在指定地点的每天平均次数

任务描述
本关任务:使用Hbase的MapReduce对已经存在 Hbase 的共享单车运行数据进行分析,统计共享单车每天在指定地点的平均次数,其中共享单车运行数据在Hbase的t_shared_bicycle表中(表结构可在编程要求中进行查看)。

相关知识
为了完成本关任务,你需要掌握:

如何配置Hbase的MapReduce类;
如何使用Hbase的MapReduce进行数据分析;
如何使用过滤器过滤读取到的数据。
如何配置Hbase的MapReduce类
MapReduce是运行在Job上的一个并行计算框架,分为Map节点和Reduce节点。

Hbase提供了org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil的initTableMapperJob和initTableReducerJob两个方法来完成MapReduce的配置。

initTableMapperJob方法:

/**
*在提交TableMap作业之前使用它。 它会适当地设置
* 工作。
*
* @param table要读取的表名。
* @param scan具有列,时间范围等的扫描实例。
* @param mapper要使用的mapper类。
* @param outputKeyClass输出键的类。
* @param outputValueClass输出值的类。
* @param job当前要调整的工作。 确保传递的作业是
*携带所有必要的HBase配置。
* @throws IOException设置细节失败。
*/
public static void initTableMapperJob(String table, Scan scan,
Class<? extends TableMapper> mapper, Class<?> outputKeyClass,
Class<?> outputValueClass, Job job)
throws IOException
/ **
initTableReducerJob方法:

/**
*在提交TableReduce作业之前使用它。 它会
*适当设置JobConf。
*
* @param table输出表。
* @param reducer要使用的reducer类。
* @param job当前要调整的工作。
* @throws IOException确定区域计数失败时。
*/
public static void initTableReducerJob(String table,
Class<? extends TableReducer> reducer, Job job)
throws IOException

如何使用Hbase的MapReduce进行数据分析
下面我们以统计每个城市的酒店个数的例子来介绍MapReduce的Map节点和Reduce节点:

Map节点执行类需要继承抽象类TableMapper,实现其map方法,结构如下:

public static class MyMapper extends TableMapper<Text, DoubleWritable> {
@Override
protected void map(ImmutableBytesWritable rowKey, Result result, Context context) {

}

}
在 map 方法中可从输入表(原数据表)得到行数据,最后向 Reduce 节点 输出键值对(key/value) 。

String cityId = Bytes.toString(result.getValue(“cityInfo”.getBytes(), “cityId”.getBytes()));
DoubleWritable i = new DoubleWritable(1);
context.write(new Text(cityId),i);
下面介绍Reduce节点,Reduce节点执行类需要继承抽象类TableReducer,实现其reduce方法:

public static class MyTableReducer extends TableReducer<Text, DoubleWritable, ImmutableBytesWritable> {
@Override
public void reduce(Text key, Iterable values, Context context) {

}
}
在reduce方法里会 接收map 方法里 相同key 的集合,最后把结果存到输出到表里。

double sum = 0;
for (DoubleWritable num:values){
sum += num.get();
}
Put put = new Put(Bytes.toBytes(key.toString()));
put.addColumn(“total_infos”.getBytes(),“total”.getBytes(),Bytes.toBytes(String.valueOf(sum)));
context.write(null,put);//initTableReducerJob 设置了表名所以在这里无需设置了
如何使用过滤器过滤读取到的数据
请查看 HBase高级特性:过滤器系列 。

编程要求
在右侧代码窗口完成代码编写:

MapReduce类需要进行配置,请在configureJob方法里配置表数据过滤器,过滤条件为:只获取目的地包含韩庄村,出发地为河北省保定市雄县的数据。
在map方法中,获取输入表t_shared_bicycle的相关信息,通过开始时间获取当天日期,并传入到reduce
在reduce方法中通过当天日期计算共享单车每天平均次数,并把每天次数,四舍五入保留两位有效数字,存入到列族为info,字段为avgNum,ROWKEY 为河北省保定市雄县-韩庄村的表里。
t_shared_bicycle表结构如下:

列族名称 字段 对应的文件的描述 ROWKEY (格式为:骑行id)
info beginTime 开始时间 trip_id
info endTime 结束时间 trip_id
info bicycleId 车辆id trip_id
info departure 出发地 trip_id
info destination 目的地 trip_id
info city 所在城市 trip_id
info start_longitude 开始经度 trip_id
info stop_longitude 结束经度 trip_id
info start_latitude 开始纬度 trip_id
info stop_latitude 结束纬度 trip_id
测试说明
平台会对你编写的代码进行测试,若是与预期输出相同,则算通关。

开始你的任务吧,祝你成功!
示例代码如下:

package com.educoder.bigData.sharedbicycle;
import java.io.IOException;
import java.math.BigDecimal;
import java.math.RoundingMode;
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.Locale;
import java.util.Map;
import java.util.Scanner;
import org.apache.commons.lang3.time.DateFormatUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.hbase.CompareOperator;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.filter.BinaryComparator;
import org.apache.hadoop.hbase.filter.Filter;
import org.apache.hadoop.hbase.filter.FilterList;
import org.apache.hadoop.hbase.filter.SingleColumnValueFilter;
import org.apache.hadoop.hbase.filter.SubstringComparator;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.util.Tool;
import com.educoder.bigData.util.HBaseUtil;
/*** 共享单车每天在韩庄村的平均空闲时间*/
public class AverageVehicleMapReduce extends Configured implements Tool {public static final byte[] family = "info".getBytes();public static class MyMapper extends TableMapper<Text, BytesWritable> {protected void map(ImmutableBytesWritable rowKey, Result result, Context context)throws IOException, InterruptedException {/********** Begin *********/// 时间String beginTime = Bytes.toString(result.getValue(family, "beginTime".getBytes()));// 转化为yyyy-MM-ddString format = DateFormatUtils.format(Long.parseLong(beginTime), "yyyy-MM-dd", Locale.CHINA);BytesWritable bytesWritable = new BytesWritable(Bytes.toBytes(format));context.write(new Text("河北省保定市雄县-韩庄村"), bytesWritable);/********** End *********/}}public static class MyTableReducer extends TableReducer<Text, BytesWritable, ImmutableBytesWritable> {@Overridepublic void reduce(Text key, Iterable<BytesWritable> values, Context context)throws IOException, InterruptedException {/********** Begin *********/double sum = 0;int length = 0;Map<String, Integer> map = new HashMap<String, Integer>();for (BytesWritable price : values) {byte[] copyBytes = price.copyBytes();String string = Bytes.toString(copyBytes);if (map.containsKey(string)) {Integer integer = map.get(string) + 1;map.put(string, integer);} else {map.put(string, new Integer(1));}}// 统计map value平均值Collection<Integer> values2 = map.values();for (Integer i : values2) {length++;sum += i;}BigDecimal decimal = new BigDecimal(sum / length);BigDecimal setScale = decimal.setScale(2, RoundingMode.HALF_DOWN);Put put = new Put(Bytes.toBytes(key.toString()));put.addColumn(family, "avgNum".getBytes(), Bytes.toBytes(setScale.toString()));context.write(null, put);// initTableReducerJob 设置了 表名所以在这里无需设置了/********** End *********/}}public int run(String[] args) throws Exception {// 配置JobConfiguration conf = HBaseUtil.conf;//Scanner sc = new Scanner(System.in);//String arg1 = sc.next();//String arg2 = sc.next();String arg1 = "t_shared_bicycle";String arg2 = "t_bicycle_avgnum";try {HBaseUtil.createTable(arg2, new String[] { "info" });} catch (Exception e) {// 创建表失败e.printStackTrace();}Job job = configureJob(conf, new String[] { arg1, arg2 });return job.waitForCompletion(true) ? 0 : 1;}private Job configureJob(Configuration conf, String[] args) throws IOException {String tablename = args[0];String targetTable = args[1];Job job = new Job(conf, tablename);Scan scan = new Scan();scan.setCaching(300);scan.setCacheBlocks(false);// 在mapreduce程序中千万不要设置允许缓存/********** Begin *********///设置过滤ArrayList<Filter> listForFilters = new ArrayList<Filter>();Filter destinationFilter = new SingleColumnValueFilter(Bytes.toBytes("info"), Bytes.toBytes("destination"),CompareOperator.EQUAL, new SubstringComparator("韩庄村"));Filter departure = new SingleColumnValueFilter(Bytes.toBytes("info"), Bytes.toBytes("departure"),CompareOperator.EQUAL, Bytes.toBytes("河北省保定市雄县"));listForFilters.add(departure);listForFilters.add(destinationFilter);scan.setCaching(300);scan.setCacheBlocks(false);// 在mapreduce程序中千万不要设置允许缓存Filter filters = new FilterList(listForFilters);scan.setFilter(filters);/********** End *********/// 初始化Mapreduce程序TableMapReduceUtil.initTableMapperJob(tablename, scan, MyMapper.class, Text.class, BytesWritable.class, job);// 初始化ReduceTableMapReduceUtil.initTableReducerJob(targetTable, // output tableMyTableReducer.class, // reducer classjob);job.setNumReduceTasks(1);return job;}
}

在这里插入图片描述

第3关:统计共享单车指定车辆每次使用的空闲平均时间

任务描述
本关任务:使用Hbase的MapReduce对已经存在Hbase 的共享单车运行数据进行分析,统计共享单车指定车辆每次使用的平均空闲时间,其中共享单车运行数据在Hbase的t_shared_bicycle表中(表结构可在编程要求中进行查看)。

相关知识
为了完成本关任务,你需要掌握:

如何配置Hbase的MapReduce类;
如何使用Hbase的MapReduce进行数据分析。
如何配置Hbase的MapReduce类
MapReduce是运行在Job上的一个并行计算框架,分为Map节点和Reduce节点。

Hbase提供了org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil的initTableMapperJob和initTableReducerJob两个方法来完成MapReduce的配置。

initTableMapperJob 方法:

/**
*在提交TableMap作业之前使用它。 它会适当地设置
* 工作。
*
* @param table要读取的表名。
* @param scan具有列,时间范围等的扫描实例。
* @param mapper要使用的mapper类。
* @param outputKeyClass输出键的类。
* @param outputValueClass输出值的类。
* @param job当前要调整的工作。 确保传递的作业是
*携带所有必要的HBase配置。
* @throws IOException设置细节失败。
*/
public static void initTableMapperJob(String table, Scan scan,
Class<? extends TableMapper> mapper, Class<?> outputKeyClass,
Class<?> outputValueClass, Job job)
throws IOException
/ **
initTableReducerJob方法:

/**
*在提交TableReduce作业之前使用它。 它会
*适当设置JobConf。
*
* @param table输出表。
* @param reducer要使用的reducer类。
* @param job当前要调整的工作。
* @throws IOException确定区域计数失败时。
*/
public static void initTableReducerJob(String table,
Class<? extends TableReducer> reducer, Job job)
throws IOException

如何使用Hbase的MapReduce进行数据分析
下面我们以统计每个城市的酒店个数的例子来介绍MapReduce的Map节点和Reduce节点:

Map节点执行类需要继承抽象类TableMapper,实现其map方法,结构如下:

public static class MyMapper extends TableMapper<Text, DoubleWritable> {
@Override
protected void map(ImmutableBytesWritable rowKey, Result result, Context context) {

}

}
在 map 方法中可从输入表(原数据表)得到行数据,最后向 Reduce 节点 输出键值对(key/value) 。

String cityId = Bytes.toString(result.getValue(“cityInfo”.getBytes(), “cityId”.getBytes()));
DoubleWritable i = new DoubleWritable(1);
context.write(new Text(cityId),i);
下面介绍Reduce节点,Reduce节点执行类需要继承抽象类TableReducer,实现其reduce方法:

public static class MyTableReducer extends TableReducer<Text, DoubleWritable, ImmutableBytesWritable> {
@Override
public void reduce(Text key, Iterable values, Context context) {

}
}
在reduce方法里会接收map 方法里 相同key 的集合,最后把结果存到输出到表里。

double sum = 0;
for (DoubleWritable num:values){
sum += num.get();
}
Put put = new Put(Bytes.toBytes(key.toString()));
put.addColumn(“total_infos”.getBytes(),“total”.getBytes(),Bytes.toBytes(String.valueOf(sum)));
context.write(null,put);//initTableReducerJob 设置了表名所以在这里无需设置了
编程要求
在右侧代码窗口完成代码编写:

MapReduce类需要进行配置,请在configureJob方法里配置表数据过滤器,过滤条件为:只获取车辆id为5996的数据。

在map方法中,获取输入表t_shared_bicycle的相关信息,获取开始时间和结束时间,并传入到reduce

在reduce方法中通过开始时间和结束时间计算每次使用的平均空闲时间,并把空闲时间单位转化为小时,四舍五入保留两位有效数字,存入到列族为info,字段为freeTime,ROWKEY 为5996的表里。

t_shared_bicycle表结构如下:

列族名称 字段 对应的文件的描述 ROWKEY (格式为:骑行id)
info beginTime 开始时间 trip_id
info endTime 结束时间 trip_id
info bicycleId 车辆id trip_id
info departure 出发地 trip_id
info destination 目的地 trip_id
info city 所在城市 trip_id
info start_longitude 开始经度 trip_id
info stop_longitude 结束经度 trip_id
info start_latitude 开始纬度 trip_id
info stop_latitude 结束纬度 trip_id
测试说明
平台会对你编写的代码进行测试,若是与预期输出相同,则算通关。

开始你的任务吧,祝你成功!
示例代码如下:

package com.educoder.bigData.sharedbicycle;
import java.io.IOException;
import java.math.BigDecimal;
import java.math.RoundingMode;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.hbase.CompareOperator;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.filter.Filter;
import org.apache.hadoop.hbase.filter.SingleColumnValueFilter;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.util.Tool;
import com.educoder.bigData.util.HBaseUtil;
/*** * 统计5996共享单车每次使用的空闲平均时间*/
public class FreeTimeMapReduce extends Configured implements Tool {public static final byte[] family = "info".getBytes();public static class MyMapper extends TableMapper<Text, BytesWritable> {protected void map(ImmutableBytesWritable rowKey, Result result, Context context)throws IOException, InterruptedException {// 时间long beginTime = Long.parseLong(Bytes.toString(result.getValue(family, "beginTime".getBytes())));long endTime = Long.parseLong(Bytes.toString(result.getValue(family, "endTime".getBytes())));// 拼装value ,包含开始时间和结束时间BytesWritable bytesWritable = new BytesWritable(Bytes.toBytes(beginTime + "_" + endTime));context.write(new Text("5996"), bytesWritable);}}public static class MyTableReducer extends TableReducer<Text, BytesWritable, ImmutableBytesWritable> {@Overridepublic void reduce(Text key, Iterable<BytesWritable> values, Context context)throws IOException, InterruptedException {long freeTime = 0;long beginTime = 0;int length = 0;for (BytesWritable time : values) {byte[] copyBytes = time.copyBytes();String timeLong = Bytes.toString(copyBytes);String[] split = timeLong.split("_");if(beginTime == 0) {beginTime = Long.parseLong(split[0]);continue;}else {//空闲时间 = 本次开始时间 - 上一次结束时间 freeTime = freeTime + beginTime -  Long.parseLong(split[1]);//重新设置开始时间beginTime = Long.parseLong(split[0]);length ++;}}Put put = new Put(Bytes.toBytes(key.toString()));BigDecimal decimal = new BigDecimal(freeTime / length /1000 /60 /60);BigDecimal setScale = decimal.setScale(2, RoundingMode.HALF_DOWN);put.addColumn(family, "freeTime".getBytes(), Bytes.toBytes(setScale.toString()));context.write(null, put);// initTableReducerJob 设置了 表名所以在这里无需设置了}}public int run(String[] args) throws Exception {// 配置JobConfiguration conf = HBaseUtil.conf;// Scanner sc = new Scanner(System.in);// String arg1 = sc.next();// String arg2 = sc.next();String arg1 = "t_shared_bicycle";String arg2 = "t_bicycle_freetime";try {HBaseUtil.createTable(arg2, new String[] { "info" });} catch (Exception e) {// 创建表失败e.printStackTrace();}Job job = configureJob(conf, new String[] { arg1, arg2 });return job.waitForCompletion(true) ? 0 : 1;}private Job configureJob(Configuration conf, String[] args) throws IOException {String tablename = args[0];String targetTable = args[1];Job job = new Job(conf, tablename);Scan scan = new Scan();scan.setCaching(300);scan.setCacheBlocks(false);// 在mapreduce程序中千万不要设置允许缓存Filter filter = new SingleColumnValueFilter(Bytes.toBytes("info"), Bytes.toBytes("bicycleId"),CompareOperator.EQUAL, Bytes.toBytes("5996"));scan.setFilter(filter);// 初始化Mapreduce程序TableMapReduceUtil.initTableMapperJob(tablename, scan, MyMapper.class, Text.class, BytesWritable.class, job);// 初始化ReduceTableMapReduceUtil.initTableReducerJob(targetTable, // output tableMyTableReducer.class, // reducer classjob);job.setNumReduceTasks(1);return job;}
}

在这里插入图片描述

第4关:统计指定时间共享单车使用次数

任务描述
本关任务:使用Hbase的MapReduce对已经存在Hbase的共享单车运行数据进行分析,统计共享单车指定时间的使用次数,其中共享单车运行数据在Hbase的t_shared_bicycle表中(表结构可在编程要求中进行查看)。

相关知识
为了完成本关任务,你需要掌握:

如何配置Hbase的MapReduce类;
如何使用Hbase的MapReduce进行数据分析。
如何配置Hbase的MapReduce类
MapReduce是运行在Job上的一个并行计算框架,分为Map节点和Reduce节点。

Hbase提供了org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil的initTableMapperJob和initTableReducerJob两个方法来完成MapReduce的配置。

initTableMapperJob方法:

/**
*在提交TableMap作业之前使用它。 它会适当地设置
* 工作。
*
* @param table要读取的表名。
* @param scan具有列,时间范围等的扫描实例。
* @param mapper要使用的mapper类。
* @param outputKeyClass输出键的类。
* @param outputValueClass输出值的类。
* @param job当前要调整的工作。 确保传递的作业是
*携带所有必要的HBase配置。
* @throws IOException设置细节失败。
*/
public static void initTableMapperJob(String table, Scan scan,
Class<? extends TableMapper> mapper, Class<?> outputKeyClass,
Class<?> outputValueClass, Job job)
throws IOException
/ **
initTableReducerJob方法:

/**
*在提交TableReduce作业之前使用它。 它会
*适当设置JobConf。
*
* @param table输出表。
* @param reducer要使用的reducer类。
* @param job当前要调整的工作。
* @throws IOException确定区域计数失败时。
*/
public static void initTableReducerJob(String table,
Class<? extends TableReducer> reducer, Job job)
throws IOException

如何使用Hbase的MapReduce进行数据分析
下面我们以统计每个城市的酒店个数的例子来介绍MapReduce的Map节点和Reduce节点:

Map节点执行类需要继承抽象类TableMapper,实现其map方法,结构如下:

public static class MyMapper extends TableMapper<Text, DoubleWritable> {
@Override
protected void map(ImmutableBytesWritable rowKey, Result result, Context context) {

}

}
在 map 方法中可从输入表(原数据表)得到行数据 ,最后向 Reduce 节点 输出键值对(key/value) 。

String cityId = Bytes.toString(result.getValue(“cityInfo”.getBytes(), “cityId”.getBytes()));
DoubleWritable i = new DoubleWritable(1);
context.write(new Text(cityId),i);
下面介绍Reduce节点,Reduce节点执行类需要继承抽象类TableReducer,实现其reduce方法:

public static class MyTableReducer extends TableReducer<Text, DoubleWritable, ImmutableBytesWritable> {
@Override
public void reduce(Text key, Iterable values, Context context) {

}
}
在reduce方法里会接收map 方法里 相同key 的集合,最后把结果存到输出到表里。

double sum = 0;
for (DoubleWritable num:values){
sum += num.get();
}
Put put = new Put(Bytes.toBytes(key.toString()));
put.addColumn(“total_infos”.getBytes(),“total”.getBytes(),Bytes.toBytes(String.valueOf(sum)));
context.write(null,put);//initTableReducerJob 设置了表名所以在这里无需设置了
编程要求
在右侧代码窗口Begin-End处完成代码编写:

MapReduce类需要进行配置,请在configureJob方法里配置表数据过滤器,过滤条件为:只获取开始时间大于等于2017-08-01,结束时间小于等于2017-09-01的数据。
在map方法中,获取输入表t_shared_bicycle的相关信息,次数设为1,并传入到reduce
在reduce方法中通过次数计算共享单车使用总次数,并把总次数存入到列族为info,字段为usageRate,ROWKEY 为departure的表里。
t_shared_bicycle表结构如下:

列族名称 字段 对应的文件的描述 ROWKEY (格式为:骑行id)
info beginTime 开始时间 trip_id
info endTime 结束时间 trip_id
info bicycleId 车辆id trip_id
info departure 出发地 trip_id
info destination 目的地 trip_id
info city 所在城市 trip_id
info start_longitude 开始经度 trip_id
info stop_longitude 结束经度 trip_id
info start_latitude 开始纬度 trip_id
info stop_latitude 结束纬度 trip_id
beginTime 和 endTime 在 Hbase 中以时间戳的形式存储

测试说明
平台会对你编写的代码进行测试,若是与预期输出相同,则算通关。

开始你的任务吧,祝你成功!
示例代码如下:

package com.educoder.bigData.sharedbicycle;
import java.io.IOException;
import java.util.ArrayList;
import org.apache.commons.lang3.time.FastDateFormat;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.hbase.CompareOperator;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.filter.Filter;
import org.apache.hadoop.hbase.filter.FilterList;
import org.apache.hadoop.hbase.filter.SingleColumnValueFilter;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.util.Tool;
import com.educoder.bigData.util.HBaseUtil;
/*** 共享单车使用次数统计*/
public class UsageRateMapReduce extends Configured implements Tool {public static final byte[] family = "info".getBytes();public static class MyMapper extends TableMapper<Text, IntWritable> {protected void map(ImmutableBytesWritable rowKey, Result result, Context context)throws IOException, InterruptedException {/********** Begin *********/// 次数IntWritable doubleWritable = new IntWritable(1);context.write(new Text("departure"), doubleWritable);/********** End *********/}}public static class MyTableReducer extends TableReducer<Text, IntWritable, ImmutableBytesWritable> {@Overridepublic void reduce(Text key, Iterable<IntWritable> values, Context context)throws IOException, InterruptedException {/********** Begin *********/        int totalNum = 0;for (IntWritable num : values) {int d = num.get();totalNum += d;}Put put = new Put(Bytes.toBytes(key.toString()));put.addColumn(family, "usageRate".getBytes(), Bytes.toBytes(String.valueOf(totalNum)));context.write(null, put);// initTableReducerJob 设置了 表名所以在这里无需设置了/********** End *********/}}public int run(String[] args) throws Exception {// 配置JobConfiguration conf = HBaseUtil.conf;// Scanner sc = new Scanner(System.in);// String arg1 = sc.next();// String arg2 = sc.next();String arg1 = "t_shared_bicycle";String arg2 = "t_bicycle_usagerate";try {HBaseUtil.createTable(arg2, new String[] { "info" });} catch (Exception e) {// 创建表失败e.printStackTrace();}Job job = configureJob(conf, new String[] { arg1, arg2 });return job.waitForCompletion(true) ? 0 : 1;}private Job configureJob(Configuration conf, String[] args) throws IOException {String tablename = args[0];String targetTable = args[1];Job job = new Job(conf, tablename);ArrayList<Filter> listForFilters = new ArrayList<Filter>();FastDateFormat instance = FastDateFormat.getInstance("yyyy-MM-dd");Scan scan = new Scan();scan.setCaching(300);scan.setCacheBlocks(false);// 在mapreduce程序中千万不要设置允许缓存/********** Begin *********/try {Filter destinationFilter = new SingleColumnValueFilter(Bytes.toBytes("info"), Bytes.toBytes("beginTime"),CompareOperator.GREATER_OR_EQUAL, Bytes.toBytes(String.valueOf(instance.parse("2017-08-01").getTime())));Filter departure = new SingleColumnValueFilter(Bytes.toBytes("info"), Bytes.toBytes("endTime"),CompareOperator.LESS_OR_EQUAL, Bytes.toBytes(String.valueOf(instance.parse("2017-09-01").getTime())));listForFilters.add(departure);listForFilters.add(destinationFilter);}catch (Exception e) {e.printStackTrace();return null;}Filter filters = new FilterList(listForFilters);scan.setFilter(filters);/********** End *********/// 初始化Mapreduce程序TableMapReduceUtil.initTableMapperJob(tablename, scan, MyMapper.class, Text.class, IntWritable.class, job);// 初始化ReduceTableMapReduceUtil.initTableReducerJob(targetTable, // output tableMyTableReducer.class, // reducer classjob);job.setNumReduceTasks(1);return job;}
}

在这里插入图片描述

第5关:统计共享单车线路流量

任务描述
本关任务:使用Hbase的MapReduce对已经存在Hbase的共享单车运行数据进行分析,统计共享单车线路次数,其中共享单车运行数据在Hbase的t_shared_bicycle表中(表结构可在编程要求中进行查看)。

相关知识
为了完成本关任务,你需要掌握:

如何配置Hbase的MapReduce类;
如何使用Hbase的MapReduce进行数据分析。
如何配置Hbase的MapReduce类
MapReduce是运行在Job上的一个并行计算框架,分为Map节点和Reduce节点。

Hbase提供了org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil的initTableMapperJob和initTableReducerJob两个方法来完成MapReduce的配置。

initTableMapperJob 方法:

/**
*在提交TableMap作业之前使用它。 它会适当地设置
* 工作。
*
* @param table要读取的表名。
* @param scan具有列,时间范围等的扫描实例。
* @param mapper要使用的mapper类。
* @param outputKeyClass输出键的类。
* @param outputValueClass输出值的类。
* @param job当前要调整的工作。 确保传递的作业是
*携带所有必要的HBase配置。
* @throws IOException设置细节失败。
*/
public static void initTableMapperJob(String table, Scan scan,
Class<? extends TableMapper> mapper, Class<?> outputKeyClass,
Class<?> outputValueClass, Job job)
throws IOException
/ **
initTableReducerJob方法:

/**
*在提交TableReduce作业之前使用它。 它会
*适当设置JobConf。
*
* @param table输出表。
* @param reducer要使用的reducer类。
* @param job当前要调整的工作。
* @throws IOException确定区域计数失败时。
*/
public static void initTableReducerJob(String table,
Class<? extends TableReducer> reducer, Job job)
throws IOException

如何使用Hbase的MapReduce进行数据分析
下面我们以统计每个城市的酒店个数的例子来介绍MapReduce的Map节点和Reduce节点:

Map节点执行类需要继承抽象类TableMapper,实现其map方法,结构如下:

public static class MyMapper extends TableMapper<Text, DoubleWritable> {
@Override
protected void map(ImmutableBytesWritable rowKey, Result result, Context context) {

}

}
在 map 方法中可从输入表(原数据表)得到行数据 ,最后向 Reduce 节点 输出键值对(key/value) 。

String cityId = Bytes.toString(result.getValue(“cityInfo”.getBytes(), “cityId”.getBytes()));
DoubleWritable i = new DoubleWritable(1);
context.write(new Text(cityId),i);
下面介绍Reduce节点,Reduce节点执行类需要继承抽象类TableReducer,实现其reduce方法:

public static class MyTableReducer extends TableReducer<Text, DoubleWritable, ImmutableBytesWritable> {
@Override
public void reduce(Text key, Iterable values, Context context) {

}
}
在reduce方法里会接收map 方法里 相同key 的集合,最后把结果存到输出到表里。

double sum = 0;
for (DoubleWritable num:values){
sum += num.get();
}
Put put = new Put(Bytes.toBytes(key.toString()));
put.addColumn(“total_infos”.getBytes(),“total”.getBytes(),Bytes.toBytes(String.valueOf(sum)));
context.write(null,put);//initTableReducerJob 设置了表名所以在这里无需设置了
编程要求
在右侧代码窗口完成代码编写:

MapReduce类已经配置好,不需要再进行配置
在map方法中,获取输入表t_shared_bicycle的相关信息,设置1为线路次数,把开始经度、结束经度、开始维度、结束维度、出发地、目的地、线路次数传入到reduce
在reduce方法中通过线路次数计算共享单车每个路线的使用次数,存入到列族为info,字段为lineTotal的表里,ROWKEY 格式为:开始经度-结束经度_开始维度-结束维度_出发地—目的地。
平台会输出前五的单车线路流量进行评测
t_shared_bicycle表结构如下:

列族名称 字段 对应的文件的描述 ROWKEY (格式为:骑行id)
info beginTime 开始时间 trip_id
info endTime 结束时间 trip_id
info bicycleId 车辆id trip_id
info departure 出发地 trip_id
info destination 目的地 trip_id
info city 所在城市 trip_id
info start_longitude 开始经度 trip_id
info stop_longitude 结束经度 trip_id
info start_latitude 开始纬度 trip_id
info stop_latitude 结束纬度 trip_id
测试说明
平台会对你编写的代码进行测试,若是与预期输出相同,则算通关。

开始你的任务吧,祝你成功!
示例代码如下:

package com.educoder.bigData.sharedbicycle;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.util.Tool;
import com.educoder.bigData.util.HBaseUtil;
/*** 共享单车线路流量统计*/
public class LineTotalMapReduce extends Configured implements Tool {public static final byte[] family = "info".getBytes();public static class MyMapper extends TableMapper<Text, IntWritable> {protected void map(ImmutableBytesWritable rowKey, Result result, Context context)throws IOException, InterruptedException {/********** Begin *********/        // 开始经纬度String start_latitude = Bytes.toString(result.getValue(family, "start_latitude".getBytes()));String start_longitude = Bytes.toString(result.getValue(family, "start_longitude".getBytes()));// 结束经纬度String stop_latitude = Bytes.toString(result.getValue(family, "stop_latitude".getBytes()));String stop_longitude = Bytes.toString(result.getValue(family, "stop_longitude".getBytes()));// 出发地String departure = Bytes.toString(result.getValue(family, "departure".getBytes()));// 目的地String destination = Bytes.toString(result.getValue(family, "destination".getBytes()));// 拼装value IntWritable doubleWritable = new IntWritable(1);context.write(new Text(start_latitude + "-" + start_longitude + "_" + stop_latitude + "-" + stop_longitude+ "_" + departure + "-" + destination), doubleWritable);/********** End *********/        }}public static class MyTableReducer extends TableReducer<Text, IntWritable, ImmutableBytesWritable> {@Overridepublic void reduce(Text key, Iterable<IntWritable> values, Context context)throws IOException, InterruptedException {/********** Begin *********/        int totalNum = 0;for (IntWritable num : values) {int d = num.get();totalNum += d;}Put put = new Put(Bytes.toBytes(key.toString() + totalNum ));put.addColumn(family, "lineTotal".getBytes(), Bytes.toBytes(String.valueOf(totalNum)));context.write(null, put);// initTableReducerJob 设置了 表名所以在这里无需设置了/********** End *********/}}public int run(String[] args) throws Exception {// 配置JobConfiguration conf = HBaseUtil.conf;// Scanner sc = new Scanner(System.in);// String arg1 = sc.next();// String arg2 = sc.next();String arg1 = "t_shared_bicycle";String arg2 = "t_bicycle_linetotal";try {HBaseUtil.createTable(arg2, new String[] { "info" });} catch (Exception e) {// 创建表失败e.printStackTrace();}Job job = configureJob(conf, new String[] { arg1, arg2 });return job.waitForCompletion(true) ? 0 : 1;}private Job configureJob(Configuration conf, String[] args) throws IOException {String tablename = args[0];String targetTable = args[1];Job job = new Job(conf, tablename);Scan scan = new Scan();scan.setCaching(300);scan.setCacheBlocks(false);// 在mapreduce程序中千万不要设置允许缓存// 初始化Mapreduce程序TableMapReduceUtil.initTableMapperJob(tablename, scan, MyMapper.class, Text.class, IntWritable.class, job);// 初始化ReduceTableMapReduceUtil.initTableReducerJob(targetTable, // output tableMyTableReducer.class, // reducer classjob);job.setNumReduceTasks(1);return job;}
}

在这里插入图片描述


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/226976.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

关于log4j的那些坑

背景&#xff1a;工程中同时存在log4j.xml&log4j2.xml maven依赖如下&#xff1a; 此时工程实际使用的日志文件为log4j.xml 1、当同时设置log4j和log4j2的桥接依赖时 maven依赖如下&#xff1a; 此时启动会有警告日志&#xff1a; 点击告警日志链接&#xff1a;https://…

基于OpenAI的Whisper构建的高效语音识别模型:faster-whisper

1 faster-whisper介绍 faster-whisper是基于OpenAI的Whisper模型的高效实现&#xff0c;它利用CTranslate2&#xff0c;一个专为Transformer模型设计的快速推理引擎。这种实现不仅提高了语音识别的速度&#xff0c;还优化了内存使用效率。faster-whisper的核心优势在于其能够在…

YOLOv8改进 | 主干篇 | EfficientNetV1均衡缩放网络改进特征提取层

一、本文介绍 这次给大家带来的改进机制是EfficientNetV1主干&#xff0c;用其替换我们YOLOv8的特征提取网络&#xff0c;其主要思想是通过均衡地缩放网络的深度、宽度和分辨率&#xff0c;以提高卷积神经网络的性能。这种方法采用了一个简单但有效的复合系数&#xff0c;统一…

mac安装k8s环境

安装kubectl brew install kubectl 确认一下安装的版本 kubectl version --client 如果想在本地运行kubernetes 需要安装minikube brew install minikube 需要注意安装minikube需要本地的docker服务是启动的 启动 默认连接的是google的仓库 minikube start 指定阿…

HTML实战演练之贪吃蛇美食大作战

导入&#xff1a; 一 &#xff1a;粉丝要求 今天一位小伙伴私信我说&#xff0c;想玩HTML贪吃蛇美食大作战&#xff0c;自己也是学HTML的&#xff0c;希望我能安排一下&#xff0c;那么好它来了 需知&#xff1a; 一&#xff1a;别着急先看需要知道的 要用HTML开发贪吃蛇美食…

【Java中序列化的原理是什么(解析)】

&#x1f341;序列化的原理是什么&#xff1f; &#x1f341;典型-----解析&#x1f341;拓展知识仓&#x1f341;Serializable 和 Externalizable 接门有何不同? &#x1f341;如果序列化后的文件或者原始类被篡改&#xff0c;还能被反序列化吗?&#x1f341;serialVersionU…

【机组期末速成】指令系统|机器指令概述|操作数类型与操作类型|寻址方式|指令格式

&#x1f3a5; 个人主页&#xff1a;深鱼~&#x1f525;收录专栏&#xff1a;计算机组成原理&#x1f304;欢迎 &#x1f44d;点赞✍评论⭐收藏 目录 前言&#xff1a; 一、本章考点总览 二、考点分析 1、以下有关指令系统的说法中错误的是&#xff08; &#xff09;。 2…

直方图与均衡化

直方图 统计图像中相同像素点的数量。 使用cv2.calcHist(images, channels, mask, histSize, ranges)函数 images&#xff1a;原图像图像格式为uint8或float32&#xff0c;当传入函数时应用[]括起来&#xff0c;例如[img]。 channels&#xff1a;同样用中括号括起来&#xff…

2011年AMC8数学竞赛中英文真题典型考题、考点分析和答案解析

今天是2023年12月30日&#xff0c;距离2024年元旦新年还有2天时间&#xff0c;先预祝所有的读者和小读者想今年工作、学习进步&#xff01;幸福平安&#xff01; 今天距离2024年1月19日的AMC8正式比赛只有20天的时间&#xff0c;我们继续来看AMC8竞赛的历年真题典型考题和解析…

Android笔记(二十二):Paging3分页加载库结合Compose的实现网络单一数据源访问

Paging3 组件是谷歌公司推出的分页加载库。个人认为Paging3库是非常强大&#xff0c;但是学习难点比较大的一个库。Paging3组件可用于加载和显示来自本地存储或网络中更大的数据集中的数据页面。此方法可让移动应用更高效地利用网络带宽和系统资源。在具体实现上&#xff0c;Pa…

根据文法求对应的语言

技巧&#xff1a;最后得到的是终结符组成的闭包 例题&#xff1a; 文法G[S]: S-->AB A-->aAb|ab B-->Bc|&#xff0c;求对应的语言 ①S-->(aAb|ab)(Bc|) ②我们可以观察到&#xff0c;无论A-->aAb还是A-->ab&#xff0c;都一定会同时出现ab,…

PiflowX组件-WriteToKafka

WriteToKafka组件 组件说明 将数据写入kafka。 计算引擎 flink 有界性 Streaming Append Mode 组件分组 kafka 端口 Inport&#xff1a;默认端口 outport&#xff1a;默认端口 组件属性 名称展示名称默认值允许值是否必填描述例子kafka_hostKAFKA_HOST“”无是逗号…

使用Halcon 采集图像并进行简单处理rgbl_to_gray/threshold/connection/fill_up

使用Halcon 采集图像并进行简单处理 文章目录 使用Halcon 采集图像并进行简单处理 下面介绍一个简单的采集图像的例子。在Halcon中利用图像采集接口&#xff0c;使用USB3.0相机实时拍摄图像。采集到图像后对图像进行简单的阀值分割处理&#xff0c;将有物体的区域标记出来。 &a…

抬头举手阅读YOLOV8NANO

首先用YOLOV8NANO得到PT模型&#xff0c;转换成ONNX,OPENCV调用&#xff0c;PYTHON,C,ANDROID都可以举手写字阅读YOLOV8NANO

基于Freeswitch实现的Volte网视频通知应用

现在运营商的Volte网络已经很好的支持视频通话了&#xff0c;因此在原来的电话语音通知的基础上&#xff0c;可以更进一步实现视频的通知&#xff0c;让用户有更好的体验&#xff0c;本文就从技术角度&#xff0c;基于Freeswitch来实现此类应用&#xff08;本文假设读者已对Fre…

Redis哨兵

1.哨兵介绍 1.1.为何需要哨兵&#xff1f; 为了解决master节点宕机问题&#xff0c;选举salve节点为新的master节点。 1.2.哨兵的作用 1.3.服务状态监控 1.4.选举新的master 1.5.如何实现故障转移 2.搭建哨兵集群 2.1.集群结构 这里我们搭建一个三节点形成的Sentinel集群&…

蓝桥杯-Excel地址[Java]

目录&#xff1a; 学习目标&#xff1a; 学习内容&#xff1a; 学习时间&#xff1a; 题目&#xff1a; 题目描述: 输入描述: 输出描述: 输入输出样例: 示例 1: 运行限制: 题解: 思路: 学习目标&#xff1a; 刷蓝桥杯题库日记 学习内容&#xff1a; 编号96题目Ex…

re:Invent 2023技术上新|Amazon DynamoDB与OpenSearch Service的Zero-ETL集成

Amazon DynamoDB 与 Amazon OpenSearch Service 的 Zero-ETL 集成已正式上线&#xff0c;该服务允许您通过自动复制和转换您的 DynamoDB 数据来搜索数据&#xff0c;而无需自定义代码或基础设施。这种 Zero-ETL 集成减少了运营负担和成本&#xff0c;使您能够专注于应用程序。这…

php获取访客IP、UA、操作系统、浏览器等信息

最近有个需求就是获取下本地的ip地址、网上搜索了相关的教程&#xff0c;总结一下分享给大家、有需要的小伙伴可以参考一下 一、简单的获取 User Agent 信息代码: echo $_SERVER[HTTP_USER_AGENT]; 二、获取访客操作系统信息: /** * 获取客户端操作系统信息,包括win10 * pa…

Adobe 设计精髓:创新的用户体验 | 开源日报 No.130

adobe/react-spectrum Stars: 10.1k License: Apache-2.0 React Spectrum Libraries 是一系列的库和工具&#xff0c;旨在帮助开发者构建适应性强、可访问性好且稳健的用户体验。 核心优势&#xff1a; 提供全面的可访问性和行为支持&#xff0c;符合 WAI-ARIA 编写实践&…