python实现图像的二维傅里叶变换——冈萨雷斯数字图像处理

原理

二维傅里叶变换是一种在图像处理中常用的数学工具,它将图像从空间域(我们通常看到的像素排列)转换到频率域。这种变换揭示了图像的频率成分,有助于进行各种图像分析和处理,如滤波、图像增强、边缘检测等。
在数学上,二维傅里叶变换的原理可以描述如下:
基本概念:
空间域:图像以像素的形式展示,每个像素表示特定位置的亮度或颜色值。
频率域:图像表示为不同频率的波形组合。在这个域中,图像的每个点表示一个特定频率的振幅和相位。
变换过程:

二维傅里叶变换通过将图像从空间域转换到频率域,揭示了图像中的频率信息。
变换公式涉及复数运算,考虑图像中每个点对所有频率成分的贡献。
数学表达式:
对于一个二维图像 f(x,y),其傅里叶变换
F(u,v) 定义为:
在这里插入图片描述
应用:
在频率域,图像的不同特性(如边缘、纹理)会表现为不同的频率成分。
对频率域的操作(如滤波)后,可以通过逆傅里叶变换将图像恢复到空间域。
直观理解:
低频成分通常对应于图像中的大面积均匀区域。
高频成分对应于图像中的细节,如边缘和纹理。
二维傅里叶变换在图像处理中的应用广泛,是一种强大的工具,能够帮助理解和处理图像信息。

python代码实现

在这里插入图片描述

提示

函数np.fft.fft2可以得到其傅里叶变换系数,用np.abs计算复数幅度谱后显示如右上图 所示。经对数变换后显示如左下图。最后经np.fft.fftshift函数将频谱图中心化。生成更多图像,比如单频率正弦波图像,观察它们的频谱成分。

代码

import cv2
import numpy as np
from matplotlib import pyplot as pltimg = cv2.imread('cameraman.tif', 0)#img = cv2.imread('Fig0421.tif', 0)
dft = np.abs(np.fft.fft2(img))
log_dft = np.log(1+dft)
center_dft = np.fft.fftshift(log_dft)img_list = [img, dft, log_dft, center_dft]
img_name_list = ['original', 'DFT', 'log transformed DFT', 'centralized DFT']_, axs = plt.subplots(2, 2)for i in range(2):for j in range(2):axs[i, j].imshow(img_list[i*2+j], cmap='gray')axs[i, j].set_title(img_name_list[i*2+j])axs[i, j].axis('off')plt.savefig('2D_FFT.jpg')
plt.show()

结果展示

在这里插入图片描述
在这里插入图片描述

结果分析

傅里叶谱图上的每一个像素点都代表一个频率值,幅值由像素点亮度变码而得。最中心的亮点是指直流分量,傅里叶谱图中越亮的点,对应于灰度图中对比越强烈(对比度越大)的点。
实际上对图像进行二维傅立叶变换得到频谱图,就是图像梯度的分布图,当然频谱图上的各点与图像上各点并不存在一一对应的关系,即使在不移频的情况下也是没有。傅立叶频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。这样通过观察傅立叶变换后的频谱图,也叫功率图,我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因为各点与邻域差异都不大,梯度相对较小),反之,如果频谱图中亮的点数多,那么实际图像一定是尖锐的,边界分明且边界两边像素差异较大的。
对频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心,对称分布的。将频谱移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它可以分离出有周期性规律的干扰信号,比如正弦干扰,一副带有正弦干扰,移频到原点的频谱图上可以看出除了中心以外还存在以某一点为中心,对称分布的亮点集合,这个集合就是干扰噪音产生的,这时可以很直观的通过在该位置放置带阻滤波器消除干扰.
图像信号能量将集中在系数矩阵的四个角上。经过变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/230231.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第3课 使用FFmpeg获取并播放音频流

本课对应源文件下载链接: https://download.csdn.net/download/XiBuQiuChong/88680079 FFmpeg作为一套庞大的音视频处理开源工具,其源码有太多值得研究的地方。但对于大多数初学者而言,如何快速利用相关的API写出自己想要的东西才是迫切需要…

【PowerMockito:编写单元测试过程中采用when打桩失效的问题】

问题描述 正如上图所示,采用when打桩了,但是,实际执行的时候还是返回null。 解决方案 打桩时直接用any() 但是这样可能出现一个mybatisplus的异常,所以在测试类中需要加入以下代码片段: Beforepublic void setUp() …

AI智能分析网关V4区域人数超员算法模型的应用原理及使用场景

视频AI智能分析技术已经深入到人类生活的各个角落,与社会发展的方方面面紧密相连。从日常生活中的各种场景,如人脸识别、车牌识别,到工业生产中的安全监控,如工厂园区的翻越围栏识别、入侵识别、工地的安全帽识别、车间流水线产品…

Laravel的知识点

1 、 {{ }}和{!! !!} 的区别 1){{ }} : 未解析直接输出( 是在 HTML 中内嵌 PHP 的 Blade 语法标识符,表示包含在该区块内的代码都将使用 PHP 来编译运行) 2){!! !!} : 若变量值含有HTML标签将解析成前端代码 2.两种写…

大模型实战营第二期——1. 书生·浦语大模型全链路开源开放体系

文章目录 1. 实战营介绍2. 书生浦语大模型介绍2.1 数据2.2 预训练2.3 微调2.4 评测2.5 部署2.6 智能体(应用) 1. 实战营介绍 github链接:https://github.com/internLM/tutorialInternLM:https://github.com/InternLM书生浦语官网:https://in…

西电期末1017.有序序列插值

一.题目 二.分析与思路 简单题。主要考察简单的排序&#xff0c;最后的插入数据同样不用具体实现&#xff0c;只需在输出时多输出一下即可&#xff0c;注意顺序&#xff01;&#xff01; 三.代码实现 #include<bits/stdc.h>//万能头 int main() {int n;scanf("%d…

【数据结构】二叉树(一)——树和二叉树的概念及结构

前言: 本篇博客主要了解什么是树&#xff0c;什么是二叉树&#xff0c;以及他们的概念和结构。 文章目录 一、树的概念及结构1.1 树的基本概念1.2 树的相关特征1.3 树的实现 二、二叉树的概念及性质2.1 二叉树的概念2.2 二叉树的性质 一、树的概念及结构 1.1 树的基本概念 树&…

Java技术栈 —— Redis的雪崩、穿透与击穿

Java技术栈 —— Redis的雪崩、穿透与击穿 〇、实验的先导条件&#xff08;NginxJmeter&#xff09;一、Redis缓存雪崩、缓存穿透、缓存击穿1.1 雪崩1.2 穿透1.3 击穿 二、Redis应用场景——高并发2.1 单机部署的高并发问题与解决&#xff08;JVM级别锁&#xff09;2.2 集群部署…

快速搭建知识付费小程序,3分钟即可开启知识变现之旅

产品服务 线上线下课程传播 线上线下活动管理 项目撮合交易 找商机找合作 一对一线下交流 企业文化宣传 企业产品销售 更多服务 实时行业资讯 动态学习交流 分销代理推广 独立知识店铺 覆盖全行业 个人IP打造 独立小程序 私域运营解决方案 公域引流 营销转化 …

SDH、MSTP、OTN和PTN的关系

在开始之前&#xff0c;先要解释一下TDM的概念。 TDM&#xff0c;就是时分复用&#xff0c;就是将一个标准时长&#xff08;1秒&#xff09;分成若干段小的时间段&#xff08;8000&#xff09;&#xff0c;每一个小时间段&#xff08;1/8000125us&#xff09;传输一路信号。 …

OpenEular23.09(欧拉)操作系统为企业搭建独立的K8S集群环境,详细流程+截图

一.环境&#xff1b; win10&#xff0c;vmware16 pro&#xff0c;openeular23.09&#xff0c;linux内核 6.4.0-10.1.0.20.oe2309.x86_64&#xff0c; docker-engine 2:18.09.0-328&#xff0c;kubernetes 1.25.3&#xff0c;containerd 1.6.22&#xff0c;calico v3.25 集群…

Unity 点击对话系统(含Demo)

点击对话系统 可实现点击物体后自动移动到物体附近&#xff0c;然后弹出对话框进行对话。 基于Unity 简单角色对话UI脚本的编写&#xff08;新版UI组件&#xff09;和Unity 关于点击不同物品移动并触发不同事件的结合体&#xff0c;有兴趣可以看一下之前文章。 下边代码为U…

【C++入门到精通】function包装器 | bind() 函数 C++11 [ C++入门 ]

阅读导航 引言一、function包装器1. 概念2. 基本使用3. 逆波兰表达式求值&#xff08;1&#xff09;普通写法&#xff08;2&#xff09;使用包装器以后的写法 二、bind() 函数温馨提示 引言 很高兴再次与大家分享关于 C11 的一些知识。在上一篇文章中&#xff0c;我们讲解了 c…

JDK、JRE、JVM的联系与区别

JDK、JRE、JVM的联系与区别 一、JDK,JRE,JVM定义 JDK(Java Development Kit),包含JRE,以及增加编译器和调试器等用于程序开发的文件。 JRE(Java Runtime Environment)&#xff0c;包含Java虚拟机、库函数、运行Java应用程序所必须的文件。 JVM(Java Virtual Machine)是一个虚…

c++ 类和对象

目录 基本概念类的定义类的基本使用对象的实例化访问控制符 面向对象程序设计方法实例 构造函数和析构函数构造函数定义总结 析构函数定义作用 多个对象构造和析构 对象的动态建立和释放new和deletenew delete和malloc free区别 对象的赋值利用实例化好的对象对另外一个对象初始…

力扣hot100 二叉树的直径

&#x1f468;‍&#x1f3eb; 题目地址 一个节点的最大直径 它左树的深度 它右树的深度 &#x1f60b; AC code /*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* TreeNode right;* TreeNode() {}* Tr…

5.云原生安全之ingress配置域名TLS证书

文章目录 cloudflare配置使用cloudflare托管域名获取cloudflare API Token在cloudflare中配置SSL/TLS kubesphere使用cert-manager申请cloudflare证书安装证书管理器创建Secret资源创建cluster-issuer.yaml创建cert.yaml申请证书已经查看申请状态 部署harbor并配置ingress使用证…

C++上位软件通过Snap7开源库访问西门子S7-200/合信M226ES数据块的方法

前言 上一篇文章中介绍了Snap7访问西门子S7-1200/S7-1500 DB块的方法&#xff0c;对于S7-200PLC是没有数据块访问的。S7-200PLC中Snap7只能通过访问MB块&#xff0c;VB块的方法进行和PLC之间的Snap7通信和数据交换。手头没有S7-200PLC故通过合信CTMC M226ES运动控制器进行测试&…

魔改版小市值策略

策略思路 最近几年&#xff0c;小市值策略一直都收益不错&#xff08;当然&#xff0c;不包含17年和18年&#xff09;。小市值因子对收益的影响是很大的。特别是行情不好的时候&#xff0c;大家都忙着炒作热点&#xff0c;那么这时候符合题材的小市值更加符合炒作标准了。 为…

Superset服务安装

文章目录 Superset概述Superset应用场景Superset安装及使用安装Python环境安装Miniconda下载Miniconda(Python3版本)安装Miniconda取消每次登陆自动激活conda base环境创建Python3.7(Superset)环境配置conda国内镜像创建Superset环境激活Superset环境查看python版本 Superset部…