【C语言】结构体内存对齐问题

1.结构体内存对齐

我们已经基本掌握了结构体的使用了。那我们现在必须得知道结构体在内存中是如何存储的?内存是如何分配的?所以我们得知道如何计算结构体的大小?这就引出了我们今天所要探讨的内容:结构体内存对齐。

1.1 对齐规则

首先得掌握结构体的对齐规则:
1. 结构体的第⼀个成员对⻬到和结构体变量起始位置偏移量为0的地址处。
2. 其他成员变量要对⻬到某个数字(对⻬数)的整数倍的地址处。
对齐数 = 编译器默认的⼀个对⻬数 与 该成员变量大小的 较⼩值
- VS 中默认对齐数的值为 8
- Linux中 gcc 没有默认对⻬数,对⻬数就是成员⾃⾝的大小
3. 结构体总大小为最⼤对⻬数(结构体中每个成员变量都有⼀个对⻬数,所有对⻬数中最⼤的)的
整数倍。
4. 如果嵌套了结构体的情况,嵌套的结构体成员对⻬到⾃⼰的成员中最⼤对⻬数的整数倍处,结构
体的整体⼤⼩就是所有最⼤对⻬数(含嵌套结构体中成员的对⻬数)的整数倍。
范例1:
//范例1
struct S1
{char c1;//1 8 1int i;  //4 8 4char c2;//1 8 1
};int main()
{struct S1 s1 = { 0 };printf("%zd\n", sizeof(s1));return 0;
}

我们画图分析一下:

15aa98d199d8432ab9f0d6c61cdd4f6f.png

我们运行一下结果看看,是不是12个字节:

ad308321e09142eebe4307b078b41f7c.png

确实是12个字节,这就说明,结构体在内存存储中,存在内存对齐的原则。

范例2:

//范例2
struct S2
{char c1;char c2;int i;
};int main()
{struct S2 s2 = { 0 };printf("%zd\n", sizeof(s2));return 0;
}

同样的道理:

f4f48a75f2c14e3ba8d8a82a023c9309.png

运行结果:

3d07f9a5b61d4d03a514ca6385a888f1.png

范例3:

//范例3
struct S3
{double d;//8 8 8char c;  //1 8 1int i;   //4 8 4
};int main()
{struct S3 s3 = { 0 };printf("%zd\n", sizeof(s3));return 0;
}

08e42c74535f427aa4faf99a13703b04.png

运行结果:

7d29cbd2cc934f93bfdefabb731ff858.png

范例4:

//范例4
struct S3
{double d;//8 8 8char c;  //1 8 1int i;   //4 8 4
};struct S4
{char c1;struct S3 s3;double d;
};int main()
{struct S4 s4 = { 0 };printf("%zd\n", sizeof(s4));return 0;
}

65519e877cb049b681f6aee2312cfd28.png

运行结果:

feceb090dd354b35bc2b3479e5262748.png

1.2 为什么存在内存对齐?

⼤部分的参考资料都是这样说的:
1. 平台原因 (移植原因):
不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
2.性能原因:
数据结构(尤其是栈)应该尽可能地在⾃然边界上对⻬。原因在于,为了访问未对⻬的内存,处理器需要作两次内存访问;⽽对⻬的内存访问仅需要⼀次访问。假设⼀个处理器总是从内存中取8个字节,则地 址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对⻬成8的倍数,那么就可以⽤⼀个内存操作来读或者写值了。否则,我们可能需要执⾏两次内存访问,因为对象可能被分放在两个8字节内存块中。
总体来说:结构体的内存对⻬是拿空间来换取时间的做法。
那在设计结构体的时候,我们既要满⾜对⻬,⼜要节省空间,如何做到:
让占⽤空间⼩的成员尽量集中在⼀起
 //例如:struct S1{char c1;//1 8 1int i;  //4 8 4char c2;//1 8 1};
//sizeof(struct S1) -> 12个字节struct S2{char c1;//1 8 1char c2;//1 8 1int i;  //4 8 4};
//sizeof(struct S2) -> 8个字节

1.3 修改默认对齐数

#pragma 这个预处理指令,可以改变编译器的默认对齐数。
#include <stdio.h>#pragma pack(1)//设置默认对⻬数为1
struct S
{char c1;int i;char c2;
};
#pragma pack()//取消设置的对⻬数,还原为默认
int main()
{//输出的结果是什么?printf("%d\n", sizeof(struct S));return 0;
}
结构体在对齐方式不合适的时候,我们可以自己更改默认对齐数。

运行结果:

ab6eb5410408467199d9cc00b576a0dc.png

2.结构体传参

struct S
{int data[1000];int num;
};
struct S s = {{1,2,3,4}, 1000};
//结构体传参
void print1(struct S s)
{printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{printf("%d\n", ps->num);
}
int main()
{print1(s); //传结构体print2(&s); //传地址return 0;
}
上⾯的 print1 print2 函数哪个好些?
答案是:首选print2函数。
原因:
函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递⼀个结构体对象的时候,结构体过⼤,参数压栈的的系统开销⽐较⼤,所以会导致性能的下降。
结论:
结构体传参的时候,要传结构体的地址。

3.结构体实现位段

结构体讲完就得讲讲结构体实现位段的能力。

3.1 什么是位段

位段的声明和结构是类似的,有两个不同:
1. 位段的成员必须是 int、unsigned int 或signed int ,在C99中位段成员的类型也可以
选择其他类型。
2. 位段的成员名后边有⼀个冒号和⼀个数字。
比如:
struct A
{int _a:2;int _b:5;int _c:10;int _d:30;
};
A就是⼀个位段类型。
那位段A所占内存的大小是多少?
printf("%d\n", sizeof(struct A));

3.2 位段的内存分配

1. 位段的成员可以是 intunsigned int signed int 或者是 char 等类型
2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的⽅式来开辟的。
3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使⽤位段。
//⼀个例⼦
#include <stdio.h>
struct S
{char a : 3;char b : 4;char c : 5;char d : 4;
};
int main()
{struct S s = { 0 };s.a = 10;s.b = 12;s.c = 3;s.d = 4;//空间是如何开辟的?return 0;
}

f58e0bf2187f4ef3a513e6fefa651cee.png

3.3 位段的跨平台问题

1. int 位段被当成有符号数还是⽆符号数是不确定的。
2. 位段中最⼤位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机器会
出问题。
3. 位段中的成员在内存中从左向右分配,还是从右向左分配,标准尚未定义。
4. 当⼀个结构包含两个位段,第⼆个位段成员⽐较大,⽆法容纳于第⼀个位段剩余的位时,是舍弃
剩余的位还是利⽤,这是不确定的。
总结:
跟结构相⽐,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

3.4 位段使用的注意事项

位段的⼏个成员共有同⼀个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位置处是没有地址的。内存中每个字节分配⼀个地址,⼀个字节内部的bit位是没有地址的。
所以不能对位段的成员使⽤&操作符,这样就不能使⽤scanf直接给位段的成员输⼊值,只能是先输⼊放在⼀个变量中,然后赋值给位段的成员。
struct A
{int _a : 2;int _b : 5;int _c : 10;int _d : 30;
};
int main()
{struct A sa = {0};scanf("%d", &sa._b);//这是错误的//正确的⽰范int b = 0;scanf("%d", &b);sa._b = b;return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/23033.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【多模态处理篇三】【DeepSeek语音合成:TTS音色克隆技术揭秘】

最近帮某明星工作室做AI语音助手时遇到魔幻需求——要求用5秒的咳嗽声克隆出完整音色!传统TTS系统直接翻车,生成的语音像得了重感冒的电音怪物。直到祭出DeepSeek的TTS音色克隆黑科技,才让AI语音从"机器朗读"进化到"声临其境"。今天我们就来扒开这个声音…

IDEA使用Maven方式构建SpringBoot项目

1、环境准备 确保你已经安装了以下工具&#xff1a; Java JDK&#xff08;推荐 JDK 8 或更高版本&#xff09; IntelliJ IDEA&#xff08;推荐使用最新版本&#xff09; 2、创建 Spring Boot 项目 &#xff08;1&#xff09; 打开 IntelliJ IDEA。 &#xff08;2&#xff09…

【Redis原理】底层数据结构 五种数据类型

文章目录 动态字符串SDS(simple dynamic string )SDS结构定义SDS动态扩容 IntSetIntSet 结构定义IntSet的升级 DictDict结构定义Dict的扩容Dict的收缩Dict 的rehash ZipListZipListEntryencoding 编码字符串整数 ZipList的连锁更新问题 QuickListQuickList源码 SkipListRedisOb…

Git Repo下如何制作一个patch文件

Git Repo下如何制作一个patch文件 1. 源由2. 步骤2.1 本地代码差异2.2 添加修改代码2.3 添加未跟踪代码2.4 确认打包文件2.5 输出打包文件2.6 自查打包文件2.7 恢复工作环境 3. 总结 1. 源由 patch分享&#xff0c;更好的差异化比较&#xff0c;减少时间浪费。同时&#xff0c…

跟着李沐老师学习深度学习(十四)

注意力机制&#xff08;Attention&#xff09; 引入 心理学角度 动物需要在复杂环境下有效关注值得注意的点心理学框架&#xff1a;人类根据随意线索和不随意线索选择注意力 注意力机制 之前所涉及到的卷积、全连接、池化层都只考虑不随意线索而注意力机制则显示的考虑随意…

STM32的“Unique device ID“能否修改?

STM32F1系列的"Unique device ID"寄存器的地址为0x1FFFF7E8。 这个寄存器是只读的。 "Unique device ID"寄存器位于“System memory”中。“System memory”地址范围为“0x1FFF F000- 0x1FFF F7FF”。 所有STM32 MCU上都存在系统引导加载程序。顾名思义&a…

模型思维 - 领域模型的应用与解析

文章目录 引言模型的核心作用与价值四大模型类型UML建模工具UML类图的核心价值类关系深度剖析企业级建模实践 领域模型&#xff08;推荐&#xff09; vs 数据模型&#xff08;不推荐&#xff09;区别联系错把领域模型当数据模型错误方案 vs 正确方案对比正确方案的实现1. 数据库…

基于GWO灰狼优化的WSN网络最优节点部署算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 无线传感器网络&#xff08;Wireless Sensor Network, WSN&#xff09;由大量分布式传感器节点组成&#xff0c;用于监测物理或环境状况。节点部署是 WSN 的关键问…

产品概念的提出

产品概念的提出 一个产品或者一个产品概念idea是怎么想到的呢&#xff1f;很多情况下它其实来自生活中的一些不爽、不满意、想吐槽&#xff0c;凡是用户抱怨的事情就是用户的强烈刚需需求是我们要去做的事情。当有了一个想法时需要弄清楚一下几个问题&#xff1a; 核心用户事…

3.Docker常用命令

1.Docker启动类命令 1.启动Docker systemctl start docker 2.停止Docker systemctl stop docker 3.重启Docker systemctl restart docker 4.查看Docker状态 systemctl status docker 5.设置开机自启(执行此命令后每次Linux重启后将自启动Docker) systemctl enable do…

交互编程工具之——Jupyter

Jupyter 是什么&#xff1f; Jupyter 是一个开源的交互式编程和数据分析工具&#xff0c;广泛应用于数据科学、机器学习、教育和研究领域。其核心是 Jupyter Notebook&#xff08;现升级为 JupyterLab&#xff09;&#xff0c;允许用户在一个基于浏览器的界面中编写代码、运行…

使用 AIStor 和 OpenSearch 增强搜索功能

在这篇文章中&#xff0c;我们将探讨搜索&#xff0c;特别是 OpenSearch 如何帮助我们识别模式或查看不断增长的数据中的趋势。例如&#xff0c;如果您正在查看运营数据&#xff0c;如果您的服务似乎是随机的&#xff0c;那么您需要尽可能回溯以识别模式并找出原因。这不仅适用…

java基础学习

java基础 面向对象三大特性 特性&#xff1a;封装、继承、多态&#xff1b; 封装&#xff1a;对抽象的事物抽象化成一个对象&#xff0c;并对其对象的属性私有化&#xff0c;同时提供一些能被外界访问属性的方法&#xff1b; 继承&#xff1a;子类扩展新的数据域或功能&#…

MySQL | MySQL库、表的基本操作01

MySQL库、表的基本操作01 一、库操作1.1 查看数据库1.2 创建数据库1.3 选择数据库1.4 查看创建数据库的SQL语句1.5 修改数据库1.6 删除数据库 二、表操作2.1 创建数据表2.2 查看表2.3 查看表结构2.4 查看创建数据库的SQL语句2.5 修改表2.6 删除表 ⚠️MySQL版本 8.0 一、库操作…

设备唯一ID获取,支持安卓/iOS/鸿蒙Next(uni-device-id)UTS插件

设备唯一ID获取 支持安卓/iOS/鸿蒙(uni-device-id)UTS插件 介绍 获取设备唯一ID、设备唯一标识&#xff0c;支持安卓&#xff08;AndroidId/OAID/IMEI/MEID/MacAddress/Serial/UUID/设备基础信息&#xff09;,iOS&#xff08;Identifier/UUID&#xff09;&#xff0c;鸿蒙&am…

正点原子[第三期]Arm(iMX6U)Linux系统移植和根文件系统构建-5.3 xxx_defconfig过程

前言&#xff1a; 本文是根据哔哩哔哩网站上“arm(iMX6U)Linux系统移植和根文件系统构键篇”视频的学习笔记&#xff0c;在这里会记录下正点原子 I.MX6ULL 开发板的配套视频教程所作的实验和学习笔记内容。本文大量引用了正点原子教学视频和链接中的内容。 引用&#xff1a; …

力扣热题 100:哈希专题三道题详细解析(JAVA)

文章目录 一、两数之和1. 题目描述2. 示例3. 解题思路4. 代码实现&#xff08;Java&#xff09;5. 复杂度分析 二、字母异位词分组1. 题目描述2. 示例3. 解题思路4. 代码实现&#xff08;Java&#xff09;5. 复杂度分析 三、最长连续序列1. 题目描述2. 示例3. 解题思路4. 代码实…

嵌入式八股文(五)硬件电路篇

一、名词概念 1. 整流和逆变 &#xff08;1&#xff09;整流&#xff1a;整流是将交流电&#xff08;AC&#xff09;转变为直流电&#xff08;DC&#xff09;。常见的整流电路包括单向整流&#xff08;二极管&#xff09;、桥式整流等。 半波整流&#xff1a;只使用交流电的正…

AI2-THOR环境下实现机器人导航、物体定位与抓取

1. 依赖安装 pip install ai2thor pip install numpy pillow opencv-python2. 验证安装 # 运行测试脚本验证安装 test_thor.py from ai2thor.controller import Controller controller Controller(scene"FloorPlan1") controller.step(action"MoveAhead"…

Nginx(详解以及如何使用)

目录 1. 什么是Nginx&#xff1f; 2. 为什么使用nginx? 3. 安装nginx 3.1?安装nginx的依赖插件 3.2 下载nginx ?3.3?创建一个目录作为nginx的安装路径 ?3.4?解压 ?3.5?进入解压后的目录 3.6?指定nginx的安装路径 ?3.7?编译和安装nginx 3.8 启动nginx ?…