秋招复习之堆

目录

前言

堆的常用操作

堆的实现(大根堆)

1.   堆的存储与表示

2.   访问堆顶元素

3.   元素入堆

4.   堆顶元素出堆

Top-k 问题

方法一:遍历选择

方法二:排序

方法三:堆

总结


前言

秋招复习之堆。


「堆 heap」是一种满足特定条件的完全二叉树,主要可分为两种类型,如图所示。

  • 「小顶堆 min heap」:任意节点的值 ≤ 其子节点的值。
  • 「大顶堆 max heap」:任意节点的值 ≥ 其子节点的值。

堆作为完全二叉树的一个特例,具有以下特性。

  • 最底层节点靠左填充其他层的节点都被填满
  • 我们将二叉树的根节点称为“堆顶”,将底层最靠右的节点称为“堆底”。
  • 对于大顶堆(小顶堆),堆顶元素(根节点)的值是最大(最小)的。

堆的常用操作

许多编程语言提供的是「优先队列 priority queue」,这是一种抽象的数据结构,定义为具有优先级排序的队列。

实际上,堆通常用于实现优先队列,大顶堆相当于元素按从大到小的顺序出队的优先队列。从使用角度来看,我们可以将“优先队列”和“堆”看作等价的数据结构。

在实际应用中,我们可以直接使用编程语言提供的堆类(或优先队列类)。

类似于排序算法中的“从小到大排列”和“从大到小排列”,我们可以通过设置一个 flag 或修改 Comparator 实现“小顶堆”与“大顶堆”之间的转换。代码如下所示:

/* 初始化堆 */
// 初始化小顶堆
Queue<Integer> minHeap = new PriorityQueue<>();
// 初始化大顶堆(使用 lambda 表达式修改 Comparator 即可)
Queue<Integer> maxHeap = new PriorityQueue<>((a, b) -> b - a);/* 元素入堆 */
maxHeap.offer(1);
maxHeap.offer(3);
maxHeap.offer(2);
maxHeap.offer(5);
maxHeap.offer(4);/* 获取堆顶元素 */
int peek = maxHeap.peek(); // 5/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
peek = maxHeap.poll(); // 5
peek = maxHeap.poll(); // 4
peek = maxHeap.poll(); // 3
peek = maxHeap.poll(); // 2
peek = maxHeap.poll(); // 1/* 获取堆大小 */
int size = maxHeap.size();/* 判断堆是否为空 */
boolean isEmpty = maxHeap.isEmpty();/* 输入列表并建堆 */
minHeap = new PriorityQueue<>(Arrays.asList(1, 3, 2, 5, 4));
/* 初始化堆 */
// 初始化小顶堆
priority_queue<int, vector<int>, greater<int>> minHeap;
// 初始化大顶堆
priority_queue<int, vector<int>, less<int>> maxHeap;/* 元素入堆 */
maxHeap.push(1);
maxHeap.push(3);
maxHeap.push(2);
maxHeap.push(5);
maxHeap.push(4);/* 获取堆顶元素 */
int peek = maxHeap.top(); // 5/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
maxHeap.pop(); // 5
maxHeap.pop(); // 4
maxHeap.pop(); // 3
maxHeap.pop(); // 2
maxHeap.pop(); // 1/* 获取堆大小 */
int size = maxHeap.size();/* 判断堆是否为空 */
bool isEmpty = maxHeap.empty();/* 输入列表并建堆 */
vector<int> input{1, 3, 2, 5, 4};
priority_queue<int, vector<int>, greater<int>> minHeap(input.begin(), input.end());

堆的实现(大根堆)

1.   堆的存储与表示

完全二叉树非常适合用数组来表示。由于堆正是一种完全二叉树,因此我们将采用数组来存储堆

 将索引映射公式封装成函数

/* 获取左子节点的索引 */
int left(int i) {return 2 * i + 1;
}/* 获取右子节点的索引 */
int right(int i) {return 2 * i + 2;
}/* 获取父节点的索引 */
int parent(int i) {return (i - 1) / 2; // 向下整除
}
/* 获取左子节点的索引 */
int left(int i) {return 2 * i + 1;
}/* 获取右子节点的索引 */
int right(int i) {return 2 * i + 2;
}/* 获取父节点的索引 */
int parent(int i) {return (i - 1) / 2; // 向下整除
}

2.   访问堆顶元素

/* 访问堆顶元素 */
int peek() {return maxHeap.get(0);
}
/* 访问堆顶元素 */
int peek() {return maxHeap[0];
}

3.   元素入堆

给定元素 val ,我们首先将其添加到堆底。添加之后,由于 val 可能大于堆中其他元素,堆的成立条件可能已被破坏,因此需要修复从插入节点到根节点的路径上的各个节点,这个操作被称为「堆化 heapify」。

考虑从入堆节点开始,从底至顶执行堆化。如图所示,我们比较插入节点与其父节点的值,如果插入节点更大,则将它们交换。然后继续执行此操作,从底至顶修复堆中的各个节点,直至越过根节点或遇到无须交换的节点时结束。(就是一直和父比较,大就换)

设节点总数为 n ,则树的高度为 O(log⁡N) 。由此可知,堆化操作的循环轮数最多为  O(log⁡N) ,元素入堆操作的时间复杂度为  O(log⁡N) 。

/* 元素入堆 */
void push(int val) {// 添加节点maxHeap.add(val);// 从底至顶堆化siftUp(size() - 1);
}/* 从节点 i 开始,从底至顶堆化 */
void siftUp(int i) {while (true) {// 获取节点 i 的父节点int p = parent(i);// 当“越过根节点”或“节点无须修复”时,结束堆化if (p < 0 || maxHeap.get(i) <= maxHeap.get(p))break;// 交换两节点swap(i, p);// 循环向上堆化i = p;}
}
/* 元素入堆 */
void push(int val) {// 添加节点maxHeap.push_back(val);// 从底至顶堆化siftUp(size() - 1);
}/* 从节点 i 开始,从底至顶堆化 */
void siftUp(int i) {while (true) {// 获取节点 i 的父节点int p = parent(i);// 当“越过根节点”或“节点无须修复”时,结束堆化if (p < 0 || maxHeap[i] <= maxHeap[p])break;// 交换两节点swap(maxHeap[i], maxHeap[p]);// 循环向上堆化i = p;}
}

4.   堆顶元素出堆

堆顶元素是二叉树的根节点,即列表首元素。如果我们直接从列表中删除首元素,那么二叉树中所有节点的索引都会发生变化,这将使得后续使用堆化进行修复变得困难。为了尽量减少元素索引的变动,我们采用以下操作步骤。

  1. 交换堆顶元素与堆底元素(交换根节点与最右叶节点)。
  2. 交换完成后,将堆底从列表中删除(注意,由于已经交换,因此实际上删除的是原来的堆顶元素)。
  3. 从根节点开始,从顶至底执行堆化

如图所示,“从顶至底堆化”的操作方向与“从底至顶堆化”相反,我们将根节点的值与其两个子节点的值进行比较,将最大的子节点与根节点交换。然后循环执行此操作,直到越过叶节点或遇到无须交换的节点时结束。

与元素入堆操作相似,堆顶元素出堆操作的时间复杂度也为 O(log⁡n) 。代码如下所示:

/* 元素出堆 */
int pop() {// 判空处理if (isEmpty())throw new IndexOutOfBoundsException();// 交换根节点与最右叶节点(交换首元素与尾元素)swap(0, size() - 1);// 删除节点int val = maxHeap.remove(size() - 1);// 从顶至底堆化siftDown(0);// 返回堆顶元素return val;
}/* 从节点 i 开始,从顶至底堆化 */
void siftDown(int i) {while (true) {// 判断节点 i, l, r 中值最大的节点,记为 maint l = left(i), r = right(i), ma = i;if (l < size() && maxHeap.get(l) > maxHeap.get(ma))ma = l;if (r < size() && maxHeap.get(r) > maxHeap.get(ma))ma = r;// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出if (ma == i)break;// 交换两节点swap(i, ma);// 循环向下堆化i = ma;}
}
/* 元素出堆 */
void pop() {// 判空处理if (isEmpty()) {throw out_of_range("堆为空");}// 交换根节点与最右叶节点(交换首元素与尾元素)swap(maxHeap[0], maxHeap[size() - 1]);// 删除节点maxHeap.pop_back();// 从顶至底堆化siftDown(0);
}/* 从节点 i 开始,从顶至底堆化 */
void siftDown(int i) {while (true) {// 判断节点 i, l, r 中值最大的节点,记为 maint l = left(i), r = right(i), ma = i;if (l < size() && maxHeap[l] > maxHeap[ma])ma = l;if (r < size() && maxHeap[r] > maxHeap[ma])ma = r;// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出if (ma == i)break;swap(maxHeap[i], maxHeap[ma]);// 循环向下堆化i = ma;}
}

Top-k 问题

Q:给定一个长度为 n的无序数组 nums ,请返回数组中最大的 k个元素。

方法一:遍历选择

其时间复杂度趋向于O(n2) ,非常耗时。

 当 k=n 时,可以得到完整的有序序列,此时等价于“选择排序”算法。

方法二:排序

如图所示,我们可以先对数组 nums 进行排序,再返回最右边的 k 个元素,时间复杂度为 O(nlog⁡n) 。

显然,该方法“超额”完成任务了,因为我们只需找出最大的k个元素即可,而不需要排序其他元素。

方法三:堆

可以基于堆更加高效地解决 Top-k 问题,流程如图所示。

  1. 初始化一个小顶堆,其堆顶元素最小。
  2. 先将数组的前 k 个元素依次入堆。
  3. 从第 k+1 个元素开始,若当前元素大于堆顶元素,则将堆顶元素出堆,并将当前元素入堆。
  4. 遍历完成后,堆中保存的就是最大k 个元素。

天才!!!

/* 基于堆查找数组中最大的 k 个元素 */
Queue<Integer> topKHeap(int[] nums, int k) {// 初始化小顶堆Queue<Integer> heap = new PriorityQueue<Integer>();// 将数组的前 k 个元素入堆for (int i = 0; i < k; i++) {heap.offer(nums[i]);}// 从第 k+1 个元素开始,保持堆的长度为 kfor (int i = k; i < nums.length; i++) {// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆if (nums[i] > heap.peek()) {heap.poll();heap.offer(nums[i]);}}return heap;
}
/* 基于堆查找数组中最大的 k 个元素 */
priority_queue<int, vector<int>, greater<int>> topKHeap(vector<int> &nums, int k) {// 初始化小顶堆priority_queue<int, vector<int>, greater<int>> heap;// 将数组的前 k 个元素入堆for (int i = 0; i < k; i++) {heap.push(nums[i]);}// 从第 k+1 个元素开始,保持堆的长度为 kfor (int i = k; i < nums.size(); i++) {// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆if (nums[i] > heap.top()) {heap.pop();heap.push(nums[i]);}}return heap;
}

总共执行了 n轮入堆和出堆,堆的最大长度为 k ,因此时间复杂度为 O(nlog⁡k) 。该方法的效率很高,当 k 较小时,时间复杂度趋向 O(n) ;当 n 较大时,时间复杂度不会超过 O(nlog⁡n) 。

另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现最大的 k个元素的动态更新。


总结

  • 堆是一棵完全二叉树,根据成立条件可分为大顶堆和小顶堆。大(小)顶堆的堆顶元素是最大(小)的。
  • 优先队列的定义是具有出队优先级的队列,通常使用堆来实现。
  • 堆的常用操作及其对应的时间复杂度包括:元素入堆 O(log⁡n)、堆顶元素出堆 O(log⁡n) 和访问堆顶元素 O(1) 等。
  • 完全二叉树非常适合用数组表示,因此我们通常使用数组来存储堆。
  • 堆化操作用于维护堆的性质,在入堆和出堆操作中都会用到。
  • 输入 n 个元素并建堆的时间复杂度可以优化至 O(n) ,非常高效。
  • Top-k 是一个经典算法问题,可以使用堆数据结构高效解决,时间复杂度为 O(nlog⁡K) 。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/232863.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024年如何借用电商新零售破局?新型商业模式——乐享甄选竞拍模式

2024年如何借用电商新零售破局&#xff1f;新型商业模式——乐享甄选竞拍模式 背景&#xff1a;经历疫情三年的黑天鹅&#xff0c;消费者对未来收入预期和不自信等悲观情绪&#xff0c;从而使得“勒紧腰带&#xff0c;少消费&#xff0c;不消费”&#xff0c;以简单实用成为了新…

航空公司管理系统(迷你版12306)

要求 今天分享一个之前辅导留学生的作业&#xff0c;作业要求如下&#xff1a; Project E: Airways Management System Overall description: Your team is employed by an Airways company for the implementation of a computer system responsible for a large part of th…

PyTorch常用工具(1)数据处理

文章目录 前言1 数据处理1.1 Dataset1.2 DataLoader 前言 在训练神经网络的过程中需要用到很多的工具&#xff0c;最重要的是数据处理、可视化和GPU加速。本章主要介绍PyTorch在这些方面常用的工具模块&#xff0c;合理使用这些工具可以极大地提高编程效率。 由于内容较多&am…

TCP服务器的编写(下)

我们现在开始对我们的客户端开始封装 我们的客户端&#xff0c;创建完套接字&#xff0c;需不需要bind呢&#xff1f;&#xff1f; 当然是不需要的&#xff0c;你本身是一个客户端&#xff0c;其他人写的应用也可能是客户端&#xff0c;如果我们bind&#xff0c;一定意味着我们…

小米汽车的占用网络是什么

大家好啊&#xff0c;我是董董灿。 昨天小米汽车开了发布会&#xff0c;一下子喜提十几个热搜。 就在人们纷纷猜测&#xff0c;小米汽车的定价会不会延续小米极致性价比风格时。 雷总的一句"电池成本都不下于十几万"&#xff0c;瞬间把人们对于小米汽车定价的幻想拉…

机器学习模型可解释性的结果分析

模型的可解释性是机器学习领域的一个重要分支&#xff0c;随着 AI 应用范围的不断扩大&#xff0c;人们越来越不满足于模型的黑盒特性&#xff0c;与此同时&#xff0c;金融、自动驾驶等领域的法律法规也对模型的可解释性提出了更高的要求&#xff0c;在可解释 AI 一文中我们已…

UE相关杂项笔记

1.PAK包解析 UE4如何反向查找Pak里面包含哪些文件 - 哔哩哔哩 CMD控制台命令输入 D:&quot;Epic Games&quot;\UE_5.1\Engine\Binaries\Win64\UnrealPak.exe 包路径 -list *文件夹带空格时 添加“ ”包裹住文件夹名 解包工具路径 UE引擎安装路径\UE_5.1\Engine\Binarie…

mysql之视图mysql连接案例索引

文章目录 一、视图1.1 含义1.2 操作1.2.1 创建视图1.2.2 视图的修改1.2.3 删除视图1.2.4 查看视图 二、连接案例01)查询" 01 "课程比" 02 "课程成绩高的学生的信息及课程分数02)查询同时存在" 01 "课程和" 02 "课程的情况03&#xff0…

在IDEA中使用git分支进行开发然后合并到Master分支,2022.1.x版本

在实际开发过程中&#xff0c;为了避免因为在开发中出现的问题以及方便发布版本&#xff0c;如果是多版本发布的情况相下&#xff0c;我们通常需要采用分支进行开发&#xff0c;这个时候&#xff0c;我们就需要了解git分支的相关知识点了&#xff0c;本篇博客也是博主在实际公司…

Python基础知识总结3-面向对象进阶知识

面向对象三大特征介绍 继承子类扩展父类语法格式关于构造函数&#xff1a;类成员的继承和重写查看类的继承层次结构 object根类dir() 查看对象属性重写 __str__() 方法 多重继承MRO方法解析顺序super()获得父类定义多态特殊方法和运算符重载特殊属性 对象的浅拷贝和深拷贝组合_…

专为Mac用户设计的思维导图软件MindNode 2023 for Mac助您激发创意!

在现代快节奏的生活中&#xff0c;我们经常需要整理思绪、规划项目、记录灵感。而思维导图作为一种高效的思维工具&#xff0c;能够帮助我们更好地整理和展现思维。现在&#xff0c;我们介绍一款强大而直观的思维导图软件——MindNode 2023 for Mac&#xff0c;助您拓展思维边界…

SpingBoot的项目实战--模拟电商【5.沙箱支付】

&#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 接下来看看由辉辉所写的关于SpringBoot电商项目的相关操作吧 目录 &#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 一. 沙箱支付是什么 二.Sp…

ONLY在线商城系统设计与实现

&#x1f345;点赞收藏关注 → 私信领取本源代码、数据库&#x1f345; 本人在Java毕业设计领域有多年的经验&#xff0c;陆续会更新更多优质的Java实战项目希望你能有所收获&#xff0c;少走一些弯路。&#x1f345;关注我不迷路&#x1f345;一 、设计说明 1.1 研究背景 当…

普中STM32-PZ6806L开发板(HAL库函数实现-访问多个温度传感器DS18B20)

简介 我们知道多个DS18B20的DQ线是可以被挂在一起的, 也就是一根线上可以访问不同的DS18B20而不会造成数据错乱, 怎么做到的&#xff0c;其实数据手册都有说到&#xff0c; 就是靠64-bit ROM code 进行识别, 也可以理解成Serial Number进行识别, 因为主要差异还是在Serial Numb…

实战Flink Java api消费kafka实时数据落盘HDFS

文章目录 1 需求分析2 实验过程2.1 启动服务程序2.2 启动kafka生产 3 Java API 开发3.1 依赖3.2 代码部分 4 实验验证STEP1STEP2STEP3 5 时间窗口 1 需求分析 在Java api中&#xff0c;使用flink本地模式&#xff0c;消费kafka主题&#xff0c;并直接将数据存入hdfs中。 flin…

【C++】类和对象详解(类的使用,this指针)

文章目录 前言面向过程和面向对象的初步认识类的引入类的定义类的访问限定符和封装性访问限定符封装性 类的作用域类的实例化类对象模型如何计算类对象的大小类对象的存储方式猜测结构体内存对齐规则 this指针this指针的引出this指针的特性 总结 前言 提示&#xff1a;这里可以…

linux反汇编工具: ida pro、rizinorg/cutter; ubuntu 22 flameshot延迟截图 以应对下拉菜单

rizinorg/cutter rizinorg/cutter 是 命令行反汇编工具 rizinorg/rizin 的图形化界面, 这比 ida pro跑在kvm虚拟机中方便多了, ubuntu22.04下直接下载Cutter-v2.3.2-Linux-x86_64.AppImage后即可运行,如下图: 注意 有个同名的报废品: radare2/Cutter 即 radare2的图形化界…

基于日照时数计算逐日太阳辐射

基于日照时数计算逐日太阳辐射

彻底认识Unity ui设计中Space - Overlay、Screen Space - Camera和World Space三种模式

文章目录 简述Screen Space - Overlay优点缺点 Screen Space - Camera优点缺点 World Space优点缺点 简述 用Unity中开发了很久&#xff0c;但是对unity UI管理中Canvas组件的Render Mode有三种主要类型&#xff1a;Screen Space - Overlay、Screen Space - Camera和World Spa…

【elfboard linux开发板】7.i2C工具应用与aht20温湿度寄存器读取

1. I2C工具查看aht20的温湿度寄存器值 1.1 原理图 传感器通过IIC方式进行通信&#xff0c;连接的为IIC1总线&#xff0c;且设备地址为0x38&#xff0c;实际上通过后续iic工具查询&#xff0c;这个设备是挂载在iic-0上 1.2 I2C工具 通过i2c工具可以实现查询i2c总线、以及上面…