04 帧 Frame

文章目录

    • 04 帧 Frame
      • 4.1 相机相关信息
      • 4.2 特征点提取
      • 4.2.1 特征点提取 ExtractORB()
      • 4.3 ORB-SLAM2对双目/RGBD特征点的预处理
        • 4.3.1 双目视差公式
        • 4.3.2 双目图像特征点匹配 ComputeStereoMatches()
        • 4.3.3 根据深度信息构造虚拟右目图像:`ComputeStereoFromRGBD()`
      • 4.4 畸变矫正:`UndistortKeyPoints()`
      • 4.5 特征点分配:`AssignFeaturesToGrid()`
      • 4.5 构造函数 `Frame()`
      • 4.6 `Frame` 类的用途

04 帧 Frame

4.1 相机相关信息

Frame 类与相机相关的参数大部分都设为 static 类型,系统内所有的 Frame 对象共享一份相机参数。

成员函数/变量访问控制意义
static bool mbInitialComputationspublic static是否需要为 Frame 类的相机参数赋值
初始化为 true,第一次为相机参数赋值后变为 false
static float fx fy
static float cx cy
static float invfx invfy
public static相机内参
cv::Mat mKpublic相机内参矩阵
float mbpublic双目相机基线
float mbfpublic相机基线与焦距的乘积

这些参数首先由 Tracking 对象从 yaml 配置文件内读入,再传给 Frame 类的构造函数,第一次调用 Frame 的构造函数时为这些成员变量赋值.

4.2 特征点提取

Frame 类构造函数中调用成员变量 mpORBextractorLeftmpORBextractorRight 进行特征点提取。

成员函数/变量访问控制意义
ORBextractor* mpORBextractorLeft
ORBextractor* mpORBextractorRight
public左右目特征点提取器
cv::Mat mDescriptors
cv::Mat mDescriptorsRight
public左右目图像特征点描述子
std::vector<cv::KeyPoint> mvKeys
std::vector<cv::KeyPoint> mvKeysRight
public畸变矫正前的左右目特征点
std::vector<cv::KeyPoint> mvKeysUnpublic矫正后的左目特征点(对应mvKeys
std::vector<float> mvuRightpublic左目特征点在右目中匹配特征点的横坐标(左右目匹配特征点的纵坐标相同)
std::vector<float> mvDepthpublic特征点深度
float mThDepthpublic判断单目特征点和双目特征点的阈值
深度低于该值得特征点被认为是双目特征点
深度低于该值得特征点被认为是单目特征点

mvKeysmvKeysUnmvuRightmvDepth 的坐标索引是对应的,也就是说对于第 i 个图像特征点:

  • 其矫正前的左目特征点是 mvKeys[i]

  • 矫正后的左目特征点是 mvKeysUn[i]

  • 其在右目中对应的特征点的横坐标为 mvuRight[i],纵坐标与 mKeys[i] 相同;

  • 特征点深度为 mvDepth[i]

对于单目特征点(单目相机输入的特征点或没有找到右目匹配的左目图像特征点),其 mvuRightmvDepth 均为 -1。

4.2.1 特征点提取 ExtractORB()

成员函数/变量访问控制意义
void ExtractORB(int flag, const cv::Mat &im)public直接调用 orbExtractor 提取特征点
void Frame::ExtractORB(int flag, const cv::Mat &im)
{if(flag==0)(*mpORBextractorLeft)(im,cv::Mat(),mvKeys,mDescriptors);else(*mpORBextractorRight)(im,cv::Mat(),mvKeysRight,mDescriptorsRight);
}

4.3 ORB-SLAM2对双目/RGBD特征点的预处理

双目/RGBD 相机可以得到特征点的立体信息,包括右目特征点信息(mvuRight)、特征点深度信息(mvDepth):

  • 对于双目相机,通过双目特征点匹配关系计算特征点的深度值;
  • 对于 RGBD 相机,根据特征点深度构造虚拟的右目图像特征点。
    在这里插入图片描述
成员函数/变量访问控制意义
void ComputeStereoMatches()public双目图像特征点匹配,用于双目相机输入图像预处理
void ComputeStereoFromRGBD(const cv::Mat &imDepth)public根据深度信息构造虚拟右目图像,用于RGBD相机输入图像预处理
cv::Mat UnprojectStereo(const int &i)public根据深度信息将第 i 个特征点反投影成 MapPoint

通过这种预处理,在后面 SLAM 系统的其他部分中不用再区分双目特征点和 RGBD 特征点,它们都会以双目特征点的形式被处理(仅通过判断 mvuRight[idx] 判断某特征点是否有深度)。

4.3.1 双目视差公式

在这里插入图片描述

根据三角形相似关系

z − f z = b − u L + u R b \frac{z-f}{z}=\frac{b-u_L+u_R}{b} zzf=bbuL+uR

整理,得

z = f b d , d = u L − u R z=\frac{f b}{d}, \quad d=u_L-u_R z=dfb,d=uLuR

其中, z z z 为观测距离(深度), b b b 为基线, f f f 为焦距, d d d 为视差。

4.3.2 双目图像特征点匹配 ComputeStereoMatches()

在这里插入图片描述

双目相机分别提取到左右目特征点后对特征点进行双目匹配,并通过双目视差估计特征点深度。双目特征点匹配步骤:

(1)粗匹配:根据特征点描述子距离和金字塔层级判断匹配.粗匹配关系是按行寻找的,对于左目图像中每个特征点,在右目图像对应行上寻找匹配特征点。

(2)精匹配: 根据特征点周围窗口内容相似度判断匹配。

(3)亚像素插值: 将特征点相似度与匹配坐标之间拟合成二次曲线,寻找最佳匹配位置(得到的是一个小数)。

(4)记录右目匹配 mvuRight 和深度 mvDepth 信息。

(5)离群点筛选: 以平均相似度的 2.1 倍为标准,筛选离群点。

在这里插入图片描述

4.3.3 根据深度信息构造虚拟右目图像:ComputeStereoFromRGBD()

在这里插入图片描述

对于 RGBD 特征点,根据深度信息构造虚拟右目图像(视差公式)。这样在就可以将 RGBD 图像和双目图像归为一类,便于程序处理。

4.4 畸变矫正:UndistortKeyPoints()

成员函数/变量访问控制意义
cv::Mat mDistCoefpublic相机的畸变矫正参数
std::vector<cv::KeyPoint> mvKeys
std::vector<cv::KeyPoint> mvKeysRight
public原始左/右目图像提取出的特征点(未校正)
std::vector<cv::KeyPoint> mvKeysUnpublic畸变矫正后的左目特征点
void UndistortKeyPoints()public矫正特征点(仅对单目和RGBD)
static float mnMinX,mnMaxX
static float mnMinY,mnMaxY
public畸变矫正后的图像边界
void ComputeImageBounds(const cv::Mat &imLeft)private计算畸变矫正后的图像边界

畸变矫正只对单目和 RGBD 相机输入图像有效,双目相机的畸变矫正参数均为 0,因为双目相机数据集在发布之前已经预先做了 双目矫正

4.5 特征点分配:AssignFeaturesToGrid()

在对特征点进行预处理后,将特征点分配到 48 行 64 列的网格中以加速匹配。

成员函数/变量访问控制意义
FRAME_GRID_ROWS=48
FRAME_GRID_COLS=64
#DEFINE网格行数/列数
static float mfGridElementWidthInv
mfGridElementHeightInv
public static每个网格的宽度/高度
std::vector<std::size_t> mGrid[FRAME_GRID_COLS][FRAME_GRID_ROWS]public每个网格内特征点编号列表
void AssignFeaturesToGrid()private将特征点分配到网格中
vector<size_t> GetFeaturesInArea(const float &x, const float &y, const float &r, const int minLevel=-1, const int maxLevel=-1) constpublic获取半径为r的圆域内的特征点编号列表

为什么要分配特征点呢?

我们将图片分割为 64*48 大小的栅格,并将关键点按照位置分配到相应栅格中。匹配时,按照先粗后精的思想,先搜索栅格,再在栅格内搜索对应的像素点,这样比逐一比较像素点,效率更高。

4.5 构造函数 Frame()

包括默认构造函数、拷贝构造函数、单目/双目/RGBD 模式构造函数。

4.6 Frame 类的用途

成员变量/函数访问控制意义
Frame mCurrentFramepublic当前正在处理的帧
Frame mLastFrameprivate上一帧

Tracking 线程每收到一帧图像,就调用函数 Tracking::GrabImageMonocular()Tracking::GrabImageStereo()Tracking::GrabImageRGBD() 创建一个 Frame 对象,赋值给 mCurrentFrame

Track() 函数跟踪结束后,将 mCurrentFrame 赋值给 mLastFrame
在这里插入图片描述

除了少数被选为 KeyFrame 的帧以外,大部分 Frame 对象的作用仅在于 Tracking 线程内追踪当前帧位姿,不会对 LocalMapping 线程和 LoopClosing 线程产生任何影响,在 mLastFramemCurrentFrame 更新之后就被系统销毁了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/233965.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

书生·浦语大模型全链路开源体系 学习笔记 第二课

基础作业&#xff1a; 使用 InternLM-Chat-7B 模型生成 300 字的小故事&#xff08;需截图&#xff09;。熟悉 hugging face 下载功能&#xff0c;使用 huggingface_hub python 包&#xff0c;下载 InternLM-20B 的 config.json 文件到本地&#xff08;需截图下载过程&#xf…

Dijkstra算法——邻接矩阵实现+路径记录

本文是在下面这篇文章的基础上做了一些补充&#xff0c;增加了路径记录的功能。具体Dijkstra的实现过程可以参考下面的这篇文章。 [jarvan&#xff1a;Dijkstra算法详解 通俗易懂](Dijkstra算法详解 通俗易懂 - jarvan的文章 - 知乎 https://zhuanlan.zhihu.com/p/338414118) …

谷歌提出「边界注意力」模型,实现超越像素级检测精度!微弱边界也逃不过

有些情况下&#xff0c;当面临分辨率较低的图像时&#xff0c;可能会在进行诸如目标检测和图像分割等任务时遇到一些挑战和阻碍。这是因为低分辨率图像可能丢失了细节信息&#xff0c;使得计算机视觉系统难以准确捕捉和理解图像中的关键特征。在这种背景下&#xff0c;传统的方…

教程:Centos6迁移旧虚拟机文件后的网络配置教程,完美解决虚拟机移动后的网络ip变化问题

博主在工作后,想整整之前大学的虚拟机集群,因此特意从之前的旧电脑把虚拟机文件给拷贝了过来,在导入到vm-workstation,顺便能启动虚拟机后,发现之前的静态ip已经跟现在的宿主机网络不一样。想着重新配置,但觉得太麻烦,故想到了修改网卡的mac地址+网卡重配置方法,完美解…

uniapp微信小程序投票系统实战 (SpringBoot2+vue3.2+element plus ) -后端架构搭建

锋哥原创的uniapp微信小程序投票系统实战&#xff1a; uniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )_哔哩哔哩_bilibiliuniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )共计21条视频…

普中STM32-PZ6806L开发板(有点悲伤的故事续-人灯还未了)

简介 继上篇 普中STM32-PZ6806L开发板(有点悲伤的故事) 说到 关于 普中STM32-PZ6806L开发板的LED流水灯也被烧坏掉了&#xff0c;再也无法玩流水灯, 内心充满了只会流水灯的不甘, 流水灯就是单片机的Hello World&#xff0c;怎么能没有呢&#xff1f; 事情发展 好巧不巧想起最近…

报错解决:RuntimeError: Error building extension ‘bias_act_plugin‘

系统&#xff1a; Ubuntu22.04&#xff0c; nvcc -V&#xff1a;11.8 &#xff0c; torch&#xff1a;2.0.0cu118 一&#xff1a;BUG内容 运行stylegan项目的train.py时遇到报错&#x1f447; Setting up PyTorch plugin "bias_act_plugin"... Failed! /home/m…

【linux】tcpdump 使用

tcpdump 是一个强大的网络分析工具&#xff0c;可以在 UNIX 和类 UNIX 系统上使用&#xff0c;用于捕获和分析网络流量。它允许用户截取和显示发送或接收过网络的 TCP/IP 和其他数据包。 一、安装 tcpdump 通常是默认安装在大多数 Linux 发行版中的。如果未安装&#xff0c;可…

每天刷两道题——第十天

1.1和为k的子数组 给你一个整数数组 n u m s nums nums 和一个整数 k k k &#xff0c;请你统计并返回 该数组中和为 k k k 的子数组的个数 。子数组是数组中元素的连续非空序列。 输入&#xff1a;nums [1,2,3], k 3 输出&#xff1a;2 前缀和 1.2如何使用 前缀和的…

Jmeter扩展函数?年薪50W+的测试大佬教你怎么玩

很多同学&#xff0c;都问我&#xff1a;“老师&#xff0c;我的 jmeter 里面&#xff0c;怎么没有 MD5 函数&#xff0c;base64 函数也没有&#xff0c;我是不是用了假的 jmeter&#xff1f;” 前言 哈哈哈&#xff0c;不是的。jmeter 的函数&#xff0c;有自带函数和扩展函数…

pycharm调整漂亮的颜色主题

主题样式&#xff1a; 一、设置主题为白色 二、pycharm 如何设置字体颜色 打开pycharm编辑器&#xff0c;file > settings > editor > color scheme > python > 你也可以直接用我资源中的配置好的文件

汽车中的ECU、VCU、MCU、HCU

一、ECU是汽车电脑&#xff0c;刷汽车电脑可以提高动力&#xff0c;也可以减低动力&#xff0c;看需求。 简单原理如下。 1.汽车发动机运转由汽车电脑&#xff08;即ECU&#xff09;控制。 2.ECU控制发动机的进气量&#xff0c;喷油量&#xff0c;点火时间等&#xff0c;从而…

基础数据结构第九期 堆(数组+STL)

前言 堆是一种重要的数据结构&#xff0c;因此应该熟练掌握。 一、堆的基本概念 堆的基本&#xff1a; 堆的结构实际上是一棵完全二叉树&#xff0c;堆可以分为大根堆和小根堆 大根堆&#xff1a; 小根堆&#xff1a; 堆的储存&#xff1a; 若节点小标为i&#xff0c;则左子…

竞赛保研 基于深度学习的人脸性别年龄识别 - 图像识别 opencv

文章目录 0 前言1 课题描述2 实现效果3 算法实现原理3.1 数据集3.2 深度学习识别算法3.3 特征提取主干网络3.4 总体实现流程 4 具体实现4.1 预训练数据格式4.2 部分实现代码 5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 毕业设计…

list容器

list容器 文章目录 list容器一、头文件二、基本概念三、构造函数四、赋值和交换五、大小操作六、插入和删除七、存取操作八、反转和排序 一、头文件 #include <list>二、基本概念 功能: 将数据进行链式存储 链表(list) 是一种物理存储单元上非连续的存储结构,数据元素的…

Python 简单爬虫程序及其工作原理

前言 网络中包含大量的数据&#xff0c;这些数据对于我们来说是非常有价值的&#xff0c;因此编写一个爬虫程序&#xff0c;自动从网页中获取所需的数据&#xff0c;对于信息收集和分析是非常有帮助的。Python 是一种高效而灵活的编程语言&#xff0c;它提供了强大的库和框架来…

Redis(三)持久化

文章目录 RDB&#xff08;Redis Database&#xff09;自动触发保存频率修改dump文件保存路径修改文件保存名称dump恢复 手动触发save![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/a56fdff44aee4efa96c2ce3615b69dc1.png)bgsave 优劣优点缺点 检查修复dump文件会触…

25 心形按钮

效果演示 实现了一个心形的心形图案&#xff0c;当用户点击图案时&#xff0c;图案会旋转并缩小&#xff0c;同时背景颜色会变成白色。 Code <div class"love"><input id"switch" type"checkbox"><label class"love-heart&…

Pytorch种torch.cat与torch.stack的区别

torch.cat 和 torch.stack 是 PyTorch 中用于拼接张量的两个不同的函数&#xff0c;它们的主要区别在于拼接的方式和创建的维度。 torch.cat&#xff1a; 拼接方式&#xff1a; torch.cat 是按照给定的维度&#xff08;dim 参数&#xff09;将多个张量沿着该维度拼接。在拼接的…