如何本地部署虚VideoReTalking

环境:

Win10专业版

VideoReTalking

问题描述:

如何本地部署虚VideoReTalking

在这里插入图片描述

解决方案:

VideoReTalking是一个强大的开源AI对嘴型工具,它是我目前使用过的AI对嘴型工具中效果最好的一个!它是由西安电子科技大学、腾讯人工智能实验室和清华大学联合开发的。

1.安装git

next一直往下直到完成

在这里插入图片描述

安装时所有的选项都默认即可

2.安装Anaconda

conda是一个开源的软件包管理系统和环境管理系统,用于安装多个版本的软件包及其依赖关系,并在它们之间轻松切换。 conda是为 python程序创建的,适用于 Linux,OS X和Windows,也可以打包和分发其他软件。conda分为Anaconda和MiniConda。Anaconda是包含一些常用包的版本,Miniconda则是精简版,一般建议安装Anaconda,本文也以安装Anaconda为例;

anaconda是一个编程语言整合包,有了anaconda你可以更加方便的打库,切换环境,配置环境变量等
在这里插入图片描述next一直往下直到完成(需要一点时间)
在这里插入图片描述

添加环境变量
D:\ProgramData\anaconda3\condabin

安装成功之后,随便打开一个cmd窗口,输入“conda”如果出现的是如下的内容,即表示安装成功,否则就会报错“conda”不是内部或外部命令,也不是可运行的程序
或批处理文件

3.clone主程序到本地
在选定的文件夹空白处,点击鼠标右键,选择“Git Bash Here”,在打开的git命令窗口输入如下的命令:

git clone https://github.com/vinthony/video-retalking.git

主程序下载完成之后,可以关闭该git窗口,这时候在选定的磁盘空间有了一个名为“video-retalking”的文件夹;

4.创建和激活虚拟空间
首先进入到“video-retalking”文件夹中,在文件的路径栏输入“cmd”打开一个命令窗口,先后运行下面两行命令:

conda create -n video_retalking python=3.8

在这里插入图片描述y
在这里插入图片描述

conda activate video_retalking
在这里插入图片描述5.安装ffmpeg
在虚拟环境的命令窗口,输入如下的命令,安装FFmpeg:

conda install ffmpeg
在这里插入图片描述
6.安装torch和cuda
继续运行下面的这行命令,安装特定版本的torch和cuda:

pip install torch1.9.0+cu111 torchvision0.10.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html

在这里插入图片描述
这一步由于需要下载的文件比较大,最大的文件有3.1GB,因此你需要耐心等待它的下载和安装完成,具体的速度取决于你当地的网络情况
在这里插入图片描述
7.安装依赖组件
在torch和cuda安装结束之后,就可以安装VideoReTalking程序的依赖组件了,命令如下:

pip install -r requirements.txt

在这里插入图片描述
pip install torch2.0.0+cu118 torchvision0.15.1+cu118 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu118

pip install -r requirements.txt

pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 -f https://download.pytorch.org/whl/torch_stable.htmlpip install -r requirements.txt

8.需要安装的组件比较多,因此这一步也需要等待一定的时间,具体取决于你的网络情况

在这里插入图片描述
pip install dlib

9.下载和安装模型checkpoints

将下面这个文件夹(包含11个模型和1个子文件夹“BFM”)全部下载下来,然后将这个下载下来的checkpoints文件夹放在项目的跟目录中:

在这里插入图片描述
10.使用教程
在项目的根目录,新建一个“temp”文件夹,在temp文件夹中分别新建一个“video”文件夹和“audio”文件夹,分别用来存放用来对嘴型的视频文件和音频文件的临时文件

只需要新建这三个文件夹即可,实际使用中不需要将视频和音频文件先复制到这两个文件夹中,不管你的视频和音频文件在什么位置,系统会自动往这个temp下面的两个文件夹再复制一份

在这里插入图片描述
在这里插入图片描述
11.运行webui界面

在虚拟环境的状态下,输入如下的命令即可运行webui界面

python webUI.py

如果不在虚拟环境下,则需先激活虚拟环境,即在项目的根目录地址栏输入cmd,打开命令窗口,输入如下的命令激活虚拟环境:

conda activate video_retalking

报错
在这里插入图片描述12.安装gradio

pip install gradio

在这里插入图片描述
13.运行python webUI.py

在这里插入图片描述14.http://127.0.0.1:7860
在这里插入图片描述
15.项目第一次运行的时候还会下载几个小模型文件,体积不大,耐心等待即可!第二次之后运行就不需要再下载模型文件了!

16.如果不想每次都手动激活虚拟环境,可以下载下面的bat文件,将它放在根目录,每次使用的时候双击该bat文件即可运行webui页面@

频不宜过长,生成视频会循环使用源视频,无需上传长视频

视频为标准MP4格式、视频中只有一张人脸、每帧都要有人脸、人脸清晰可识别,人脸不过过大

\VideoReTalking\python.exe inference.py --face examples/face/1.mp4 --audio examples/audio/1.wav --outfile results/1_1.mp4python inference.py --face examples/face/1.mp4 --audio examples/audio/1.wav --outfile results/1_1.mp4
参数解释
基础参数设置base_options.py
参数类型默认值解释
–name str ‘face_recon’ 实验名称,决定样本和模型存储的位置
–gpu_ids str ‘0’ GPU的ID,例如:0、0,1,2、0,2。使用-1表示CPU
–checkpoints_dir str ‘./checkpoints’ 模型存储的目录
–vis_batch_nums float 1 用于可视化的图像批次数
–eval_batch_nums float inf 用于评估的图像批次数,设置为inf表示所有图像都参与评估
–use_ddp bool True 是否使用分布式数据并行
–ddp_port str ‘12355’ DDP端口
–display_per_batch bool True 是否使用批次显示损失
–add_image bool True 是否将图像添加到Tensorboard中
–world_size int 1 分布式数据并行的总批次数
–model str ‘facerecon’ 选择要使用的模型
–epoch str ‘latest’ 要加载的模型的训练轮数,设置为’latest’表示使用最新的缓存模型
–verbose bool 如果指定,则打印更多调试信息
–suffix str ‘’ 自定义后缀,将添加到opt.name中,例如:{model}_{netG}_size{load_size}参数名
类
型
默认值描述
DNet_path str ‘checkpoints/DNet.pt’ DNet模型的路径
LNet_path str ‘checkpoints/LNet.pth’ LNet模型的路径
ENet_path str ‘checkpoints/ENet.pth’ ENet模型的路径
face3d_net_path str ‘checkpoints/face3d_pretrain_epoch_20.pth’ face3d模型的路径
face str None 包含要使用的人脸的视频/图像的文件路径,此参数必填
audio str None 要用作原始音频源的视频/音频文件的文件路径,此参数必填
exp_img str ‘neutral’ 表情模板。可以是’neutral’,‘smile’或图像路径。默认为’neutral’
outfile str None 要保存结果视频的路径
fps float 25.0 只有当输入为静态图像时可以指定的帧率,默认为25.0
pads list [0, 20, 0, 0] 填充(上、下、左、右)。请确保至少包含下巴区域
face_det_batch_size int 4 人脸检测的批处理大小
LNet_batch_size int 16 LNet的批处理大小
img_size int 384 图像的大小(宽度和高度相等)
crop list [0, -1, 0, -1]
将视频裁剪为较小的区域(上、下、左、右)。在resize_factor和
rotate参数之后应用。如果有多个人脸,这很有用。 -1表示根据高
度、宽度自动推断值
box list [-1, -1, -1, -1]
为人脸指定一个固定的边界框。如果人脸检测失败,请仅在万不得已
时使用此选项。仅在人脸几乎不移动时有效。 语法:(上、下、左、
右)
nosmooth bool False 在短时间窗口内阻止平滑人脸检测
static bool False 指定输入是否为静态图像
up_face str ‘original’ 人脸朝向的方向。可以是’original’或其他用户指定的方向
one_shot bool False 一次处理整个视频而不是逐帧处理
without_rl1 bool False 不使用相对l1损失
tmp_dir str ‘temp’ 保存临时结果的文件夹路径
re_preprocess bool False 重新预处理视频(例如,检测新的人脸)
模型训练参数设置train_options.py,训练模型根据实际情况调整。data_root str ./ 数据集根目录
flist str datalist/train
/masks.txt 训练集掩膜文件名列表
batch_size int 32 批处理大小
dataset_mode str flist 选择数据集加载方式。[None
serial_batches bool 如果为True,按顺序获取图像以形成批次;否则随机获取图像。
num_threads int 4 加载数据的线程数
max_dataset_size int inf 数据集允许的最大样本数。如果数据集目录包含的样本数超过max_dataset_size,则仅加
载子集。
preprocess str shift_scale_rot_flip 加载时图像的缩放和裁剪方式。[shift_scale_rot_flip
use_aug bool True 是否使用数据增强
验证参数数据类型默认值解释说明
flist_val str datalist/val/masks.txt 验证集掩膜文件名列表
batch_size_val int 32 验证集的批处理大小
可视化参数数据类型默认值解释说明
display_freq int 1000 在屏幕上显示训练结果的频率
print_freq int 100 在控制台上显示训练结果的频率
网络保存和加载参数数据类型默认值解释说明
save_latest_freq int 5000 保存最新结果的频率
save_epoch_freq int 1 在每个epoch结束时保存检查点的频率
evaluation_freq int 5000 评估的频率
save_by_iter bool 是否按迭代保存模型
continue_train bool 继续训练:加载最新模型
epoch_count int 1 起始epoch计数,我们按<epoch_count><epoch_count>+<save_latest_freq>,…保存模型
phase str train 训练、验证、测试等
pretrained_name str None 从其他检查点继续训练
训练参数数据类型默认值解释说明
n_epochs int 20 初始学习率的epoch数
lr float 0.0001 Adam的初始学习率lr_policy str step 学习率策略。[linear
lr_decay_epochs int 10 每lr_decay_epochs个epoch乘以一个gamma
脸部对焦参数配置facerecon_model.py,这些参数默认即可。
网络结构参数数据类型默认值解释说明
net_recon str ‘resnet50’ 网络结构
init_path str ‘checkpoints/init_model/resnet50-0676ba61.pth’ 初始化路径
use_last_fc bool False 是否对最后一个全连接层进行零初始化
bfm_folder str ‘BFM’ BFM文件夹路径
bfm_model str ‘BFM_model_front.mat’ BFM模型
渲染器参数参数数据类型默认值解释说明
focal float 1015. 焦距
center float 112. 中心点
camera_d float 10. 相机参数d
z_near float 5. 近截面
z_far float 15. 远截面
训练参数
数据类
型
默认值解释说明
net_recog str ‘r50’ 人脸识别网络结构
net_recog_path str ‘checkpoints/recog_model/ms1mv3_arcface_r50_fp16
/backbone.pth’ 人脸识别网络的权重文件路径
use_crop_face bool False 是否使用裁剪掩码来计算照片损失
use_predef_M bool False 是否使用预定义的M矩阵来处理预测的人脸特征 (M矩阵
用于三维形状预测)
数据增强参数参数数据类型默认值解释说明
shift_pixs float 10.0 像素平移大小
scale_delta float 0.1 尺度缩放因子的变化范围
rot_angle float 10.0 旋转角度的变化范围 (单位:度)
损失权重参数数据类型默认值解释说明
w_feat float 0.2 特征损失权重损失权重参数数据类型默认值解释说明
w_color float 1.92 颜色损失权重
w_reg float 3.0e-4 形状正则化损失权重
w_id float 1.0 身份正则化损失权重
w_exp float 0.8 表情正则化损失权重
w_tex float 1.7e-2 纹理正则化损失权重
w_gamma float 10.0 Gamma矫正损失权重
w_lm float 1.6e-3 关键点坐标损失权重
w_reflc float 5.0 反照率损失权重
其他使用方法
表情控制参数操作,可以通过添加以下参数来控制表情:
参数解释
–exp_img 预定义的表情模板。默认为"neutral"(中性表情)。可以选择"smile"(微笑)或提供一个图片路径。
–up_face 可以选择"surprise"(惊讶)或"angry"(愤怒)来使用 GANimation 修改上半部分脸部的表情。

17.经测试,源视频识别错误将导致失败。具体原因官方没有详细说明,以下为网友总结:

1、资源问题:
视频不宜过长,生成视频会循环使用源视频,不用担心视频短的问题。2、视频为标准MP4格式、视频中只有一张人脸、每帧都要有人脸、人脸清晰可识别,人脸不过过大,几乎半个屏幕。人脸不可过度AI化。
音频没有太多要求,发音清晰即可。3、只支持N卡。若您的配置过低也会造成卡住的情况。4、以上无法解决问题请使用网盘中的案例视频进行测试。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/242980.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

医学图像的数据增强技术 --- 切割-拼接数据增强(CS-DA)

医学图像的新型数据增强技术 CS-DA 核心思想自然图像和医学图像之间的关键差异CS-DA 步骤确定增强后的数据数量 代码复现 CS-DA 核心思想 论文链接&#xff1a;https://arxiv.org/ftp/arxiv/papers/2210/2210.09099.pdf 大多数用于医学分割的数据增强技术最初是在自然图像上开…

H5嵌入小程序适配方案

时间过去了两个多月&#xff0c;2024已经到来&#xff0c;又老了一岁。头发也掉了好多。在这两个月时间里都忙着写页面&#xff0c;感觉时间过去得很快。没有以前那么轻松了。也不是遇到了什么难点技术&#xff0c;而是接手了一个很烂得项目。能有多烂&#xff0c;一个页面发起…

Vue2移动端项目使用$router.go(-1)不生效问题记录

目录 1、this.$router.go(-1) 改成 this.$router.back() 2、存储 from.path&#xff0c;使用 this.$router.push 3、hash模式中使用h5新增的onhashchange事件做hack处理 4、this.$router.go(-1) 之前添加一个 replace 方法 问题背景 &#xff1a; 在 Vue2 的一个移动端开发…

tag 标签

tag 标签 在使用 Git 版本控制的过程中&#xff0c;会产生大量的版本。如果我们想对某些重要版本进行记录&#xff0c;就可以给仓库历史中的某一个commit 打上标签&#xff0c;用于标识。 在本章中&#xff0c;我们将会学习如何列出已有的标签、如何创建和删除新的标签、以及…

【动态规划】【广度优先搜索】【状态压缩】847 访问所有节点的最短路径

作者推荐 视频算法专题 本文涉及知识点 动态规划汇总 广度优先搜索 状态压缩 LeetCode847 访问所有节点的最短路径 存在一个由 n 个节点组成的无向连通图&#xff0c;图中的节点按从 0 到 n - 1 编号。 给你一个数组 graph 表示这个图。其中&#xff0c;graph[i] 是一个列…

数学建模学习笔记||层次分析法

评价类问题 解决评价类问题首先需要想到一下三个问题 我们评价的目标是什么我们为了达到这个目标有哪几种可行方案评价的准则或者说指标是什么 对于以上三个问题&#xff0c;我们可以根据题目中的背景材料&#xff0c;常识以及网上收集到的参考资料进行结合&#xff0c;从而筛…

问题:Feem无法发送信息OR无法连接(手机端无法发给电脑端)

目录 前言 问题分析 资源、链接 其他问题 前言 需要在小米手机、华为平板、Dell电脑之间传输文件&#xff0c;试过安装破解的华为电脑管家、小米的MIUI文件传输等&#xff0c;均无果。&#xff08;小米“远程管理”ftp传输倒是可以&#xff0c;但速度太慢了&#xff0c;且…

js实现九九乘法表

效果图 代码 <!DOCTYPE html> <html><head><meta charset"utf-8"><title></title></head><body><script type"text/javascript">// 输出乘法口诀表// document.write () 空格 " " 换行…

java黑马学习笔记

数组 变量存在栈中&#xff0c;变量值存放在堆中。 数组反转 public class test{public static void main(String[] args){//目标&#xff1a;完成数组反转int[] arr {10,20,30,40,50};for (int i 0,j arr.length - 1;i < j;i,j--){int tep arr[j]; //后一个值赋给临时…

微前端-无界wujie

无界微前端方案基于 webcomponent 容器 iframe 沙箱&#xff0c;能够完善的解决适配成本、样式隔离、运行性能、页面白屏、子应用通信、子应用保活、多应用激活、vite 框架支持、应用共享等用户的核心诉求。 主项目安装无界 vue2项目&#xff1a;npm i wujie-vue2 -S vue3项目…

wayland(xdg_wm_base) + egl + opengles 最简实例

文章目录 前言一、ubuntu 下相关环境准备1. 获取 xdg_wm_base 依赖的相关文件2. 查看 ubuntu 上安装的opengles 版本3. 查看 weston 所支持的 窗口shell 接口种类二、xdg_wm_base 介绍三、egl_wayland_demo1.egl_wayland_demo2_0.c2.egl_wayland_demo3_0.c3. xdg-shell-protoco…

深耕文档型数据库12载,SequoiaDB再开源

1月15日&#xff0c;巨杉数据库举行SequoiaDB新特性及开源项目发布活动。本次活动回顾了巨杉数据库深耕JSON文档型数据库12年的发展历程与技术演进&#xff0c;全面解读了SequoiaDB包括在高可用、安全、实时、易用性四个方向的技术特性&#xff0c;宣布了2024年面向技术社区的开…

Qt事件过滤

1.相关说明 监控鼠标进入组件、出组件、点击组件、双击组件的事件&#xff0c;需要重写eventFilter函数 2.相关界面 3.相关代码 #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui-&…

Vue——计算属性

文章目录 计算属性computed 计算属性 vs methods 方法计算属性完整写法 综合案例&#xff1a;成绩案例 计算属性 概念&#xff1a;基于现有的数据&#xff0c;计算出来的新属性。依赖的数据变化&#xff0c;自动重新计算 语法: ①声明computed配置项中&#xff0c;一个计算属性…

Mac NTFS 磁盘读写工具选哪个好?Tuxera 还是 Paragon?

在使用 Mac 电脑时&#xff0c;我们经常需要读写 NTFS 格式的硬盘或 U 盘。然而&#xff0c;由于 Mac 系统不支持 NTFS 格式的读写&#xff0c;因此我们需要借助第三方工具来实现这个功能。而在市场上&#xff0c;Tuxera 和 Paragon 是两款备受推崇的 Mac NTFS 磁盘读写工具。那…

C++入门学习(八)sizeof关键字

sizeof 是 C 和 C 中的一个运算符&#xff0c;用于确定特定类型或对象的内存大小&#xff08;以字节为单位&#xff09;。 1、查看数据类型占据内存大小 #include <iostream> using namespace std; int main() {short a 1;int b 1;long c 1;long long d 1;cout<…

超级菜鸟怎么学习数据分析?

如果你有python入门基础&#xff0c;在考虑数据分析岗&#xff0c;这篇文章将带你了解&#xff1a;数据分析人才的薪资水平&#xff0c;数据人应该掌握的技术栈。 首先来看看&#xff0c;我在搜索数据分析招聘时&#xff0c;各大厂开出的薪资&#xff1a; 那各大厂在数据领域…

论文阅读_CogTree_推理的认知树

英文名称: From Complex to Simple: Unraveling the Cognitive Tree for Reasoning with Small Language Models中文名称: 从复杂到简单&#xff1a;揭示小型语言模型推理的认知树链接: http://arxiv.org/abs/2311.06754v1代码: https://github.com/alibaba/EasyNLP作者: Junbi…

Unity学习-逐帧图集动画制作

首先在文件部分创建一个Sprite Library Asset 然后点击创建出来的文件 点下面的加号添加对应的图 添加完成之后点一下Apply 然后新建一个物体 添加这三个组件 其中SpriteLibrary里面 把你刚刚创建的图集文件拉过来 Sprite Resolver选择对应的动作和图片 然后开始制作动画 An…

Jupyter-Notebook无法创建ipynb文件

文章目录 概述排查问题恢复方法参考资料 概述 用户反馈在 Notebook 上无法创建 ipynb 文件&#xff0c;并且会返回以下的错误。 报错的信息是: Unexpected error while saving file: Untitled5.ipynb attempt to write a readonly database 排查问题 这个是一个比较新的问…