基于神经网络的电力系统的负荷预测

一、背景介绍:

电力系统负荷预测是生产部门的重要工作之一,通过准确的负荷预测,可以经济合理地安排机组的启停、减少旋转备用容量、合理安排检修计划、降低发电成本和提高经济效益。负荷预测按预测的时间可以分为长期、中期和短期负荷预测。其中,短期负荷预测中,周负 荷预测(未来1周)、日负荷预测(未来24小时)及提前小时预测对于电力系统的实时运行 调度至关重要。负荷预测对电力系统控制、运行和计划都有着重要意义。因为对未来时刻进 行预调度要以负荷预测的结果为依据,负荷预测结果的准确性将直接影响调度的结果,从而 对电力系统的安全稳定运行和经济性带来重要影响。

力系统负荷变化受多方面的影响。一方面,存在着由于未知不确定因素引起 的随机波动;另一方面,又具有周期变化的规律性,这也使得负荷曲线具有相似性。同时,由于受天气、节假日等特殊情况影响,致使负荷变化出现差异。假设某电力系统在过去12天的有功负荷值,以及有关气象特征经归一化后的数据如表1所示。

1   电力系统负荷变化样本集

日期

电 力 负 荷

   

1

0.2452

0.1466

0.1314

0.2243

0.5523

0.6642

0.7015

0.6981

0.6821

0.6945

0.7549

0.8215

2

0.2217

0.1581

0.1408

0.2304

0.5134

0.5312

0.6819

0.7125

0.7265

0.6847

0.7826

0.8325

0.2415

0.3027

0

3

0.2525

0.1627

0.1507

0.2406

0.5502

0.5636

0.7051

0.7352

0.7459

0.7015

0.8064

0.8156

0.2385

0.3125

0

4

0.2016

0.1105

0.1243

0.1978

0.5021

0.5232

0.6819

0.6952

0.7015

0.6825

0.7825

0.7895

0.2216

0.2701

0

5

0.2115

0.1201

0.1312

0.2019

0.5532

0.5736

0.7029

0.7032

0.7189

0.7019

0.7965

0.8025

0.2352

0.2506

0.5

6

0.2335

0.1322

0.1534

0.2214

0.5623

0.5827

0.7198

0.7276

0.7359

0.7506

0.8092

0.8221

0.2542

0.3125

0

7

0.2368

0.1432

0.1653

0.2205

0.5823

0.5971

0.7136

0.7129

0.7263

0.7153

0.8091

0.8217

0.2601

0.3198

0

8

0.2342

0.1368

0.1602

0.2131

0.5726

0.5822

0.7101

0.7098

0.7127

0.7121

0.7995

0.8126

0.2579

0.3099

0

9

0.2113

0.1212

0.1305

0.1819

0.4952

0.5312

0.6886

0.6898

0.6999

0.7323

0.7721

0.7956

0.2301

0.2867

0.5

10

0.2005

0.1121

0.1207

0.1605

0.4556

0.5022

0.6553

0.6673

0.6798

0.7023

0.7521

0.7756

0.2234

0.2799

1

11

0.2123

0.1257

0.1343

0.2079

0.5579

0.5716

0.7059

0.7145

0.7205

0.7401

0.8019

0.8136

0.2314

0.2977

0

12

0.2119

0.1215

0.1621

0.2161

0.6171

0.6159]

0.7155

0.7201

0.7243

0.7298

0.8179

0.8229

0.2317

0.2936

0

在表1中,由于电力负荷每隔2个小时测量1次,故一天共有12组负荷数据。而气象特征分别为预测日的最高气温、最低气温和天气特征值,其中分别用0表示晴、0.5表示阴天和1表示雨天等天气特征。

试根据电力系统以前的电力负荷和当日的气象特征预测当日的电力负荷。

提示:

①确定训练样本集

② 网络设计和训练伪代码

net=newff(minmax(X),[* *],{ });

net.trainParam.epochs=100;

net.trainParam.goal=0.001;

net=train(net,X,T);

y=sim(net,X);

 网络测试

网络训练成功后,利用测试样本对网络进行测试。测试样本由表1中的第11 天 的 1 2组实际负荷数据和第12天的预测日当天的3个气象特征值组成,

Xtest

ytest=sim(net,Xtest)

  • 工程实现:

用BP网络预测电力负荷

1)网络创建

BP一般分为3层输入层,中间层(隐藏层),输出层。

通过单隐层的BP网络实现。由于输入量有15个元素,所以网络输出层的神经元有15个,根据Kolmogorov定理网络中间层神经元取31神经元为最佳。根据12个输出向量定义输出层的神经元为12个。网络中间层神经元传递函数采用S型正切函网络经过训练后才可以用于电力负荷预测的实际应用。考虑到网络的结构比较复杂,神经网络元个数比较多,需要适当增大训练次数和学习速率。训练参数的设定如表4。3所示

训练参数表

训练次数

训练目标

学习速率

10000

0.001

0.01

有关程序如下:

net.trainParam。epochs=10000

net.trainParam。goal=0.001;

LP.lr=0.01;

3)网络测试

输出层神经元函数采用S型对数函数logsig。因为输出数据位于[0,1]之间。输入量的[0,1]之间用变量threshold来规定。Bp的网络训练函数为trainlm,所以在newff中调用trainlm函数。

把输出值减去实际值之后再除以实际值就是数据的相对误差了,matlab的程序如下所示:

    z=y—X;

    c=X.\z;

    plot(1:12,c);

    grid;

    title('相对误差曲线’);

    xlabel(’时间’);

    ylabel(’相对误差率’);

训练过程可视化如下

BP神经网络MATLAB语法

1. 数据预处理

在训练神经网络前一般需要对数据进行预处理,一种重要的预处理手段是归一化处理。下面简要介绍归一化处理的原理与方法。

(1) 什么是归一化?

数据归一化,就是将数据映射到[0,1]或[-1,1]区间或更小的区间,比如(0.1,0.9) 。

(2) 为什么要归一化?

<1>输入数据的单位不一样,有些数据的范围可能特别大,导致的结果是神经网络收敛慢、训练时间长。

<2>数据范围大的输入在模式分类中的作用可能会偏大,而数据范围小的输入作用就可能会偏小。

<3>由于神经网络输出层的激活函数的值域是有限制的,因此需要将网络训练的目标数据映射到激活函数的值域。例如神经网络的输出层若采用S形激活函数,由于S形函数的值域限制在(0,1),也就是说神经网络的输出只能限制在(0,1),所以训练数据的输出就要归一化到[0,1]区间。

<4>S形激活函数在(0,1)区间以外区域很平缓,区分度太小。例如S形函数f(X)在参数a=1时,f(100)与f(5)只相差0.0067。

(3) 归一化算法

  一种简单而快速的归一化算法是线性转换算法。线性转换算法常见有两种形式:

<1> y = ( x - min )/( max - min )

  其中min为x的最小值,max为x的最大值,输入向量为x,归一化后的输出向量为y 。上式将数据归一化到 [ 0 , 1 ]区间,当激活函数采用S形函数时(值域为(0,1))时这条式子适用。

<2> y = 2 * ( x - min ) / ( max - min ) - 1

这条公式将数据归一化到 [ -1 , 1 ] 区间。当激活函数采用双极S形函数(值域为(-1,1))时这条式子适用。

(4) Matlab数据归一化处理函数

Matlab中归一化处理数据可以采用premnmx , postmnmx , tramnmx 这3个函数。

<1> premnmx

语法:[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t)

参数:

pn: p矩阵按行归一化后的矩阵

minp,maxp:p矩阵每一行的最小值,最大值

tn:t矩阵按行归一化后的矩阵

mint,maxt:t矩阵每一行的最小值,最大值

作用:将矩阵p,t归一化到[-1,1] ,主要用于归一化处理训练数据集。

<2> tramnmx

语法:[pn] = tramnmx(p,minp,maxp)

参数:

minp,maxp:premnmx函数计算的矩阵的最小,最大值

pn:归一化后的矩阵

作用:主要用于归一化处理待分类的输入数据。

<3> postmnmx

语法: [p,t] = postmnmx(pn,minp,maxp,tn,mint,maxt)

参数:

minp,maxp:premnmx函数计算的p矩阵每行的最小值,最大值

mint,maxt:premnmx函数计算的t矩阵每行的最小值,最大值

作用:将矩阵pn,tn映射回归一化处理前的范围。postmnmx函数主要用于将神经网络的输出结果映射回归一化前的数据范围。

2. 使用Matlab实现神经网络

使用Matlab建立前馈神经网络主要会使用到下面3个函数:

newff :前馈网络创建函数

train:训练一个神经网络

sim :使用网络进行仿真

下面简要介绍这3个函数的用法。

(1) newff函数

<1>语法

newff函数参数列表有很多的可选参数,具体可以参考帮助文档,这里介绍一种简单形式。

语法:net = newff ( A, B, {C} ,‘trainFun’)

参数:

A:一个n×2的矩阵,第i行元素为输入信号xi的最小值和最大值;

B:一个k维行向量,其元素为网络中各层节点数;

C:一个k维字符串行向量,每一分量为对应层神经元的激活函数;

trainFun :为学习规则采用的训练算法。

表3.1 BP网络的常用函数表

函数类型

函数名称

函数用途

前向网络创建函数

newcf

创建级联前向网络

Newff

创建前向BP网络

传递函数

logsig

S型的对数函数

tansig

S型的正切函数

purelin

纯线性函数

学习函数

learngd

基于梯度下降法的学习函数

learngdm

梯度下降动量学习函数

性能函数

mse

均方误差函数

msereg

均方误差规范化函数

显示函数

plotperf

绘制网络的性能

plotes

绘制一个单独神经元的误差曲面

plotep

绘制权值和阈值在误差曲面上的位置

errsurf

计算单个神经元的误差曲面

newff函数用于创建一个BP网络。调用格式为:

net=newff

net=newff(PR,[S1 S2..SN1],{TF1 TF2..TFN1},BTF,BLF,PF)

其中,net=newff;用于在对话框中创建一个BP网络。

net为创建的新BP神经网络;

PR为网络输入向量取值范围的矩阵;

[S1 S2…SNl]表示网络隐含层和输出层神经元的个数;

{TFl TF2…TFN1}表示网络隐含层和输出层的传输函数,默认为‘tansig’;

BTF表示网络的训练函数,默认为‘trainlm’;

BLF表示网络的权值学习函数,默认为‘learngdm’;

PF表示性能数,默认为‘mse’。

<2>常用的激活函数

  常用的激活函数有:

a) 线性函数 (Linear transfer function)

  该函数的字符串为’purelin’。

b) 对数S形转移函数( Logarithmic sigmoid transfer function )

该函数的字符串为’logsig’。

c) 双曲正切S形函数 (Hyperbolic tangent sigmoid transfer function )

该函数的字符串为’tansig’。

Matlab的安装目录下的toolbox\nnet\nnet\nntransfer子目录中有所有激活函数的定义说明。

<3>常见的训练函数

常见的训练函数有:

traingd :梯度下降BP训练函数(Gradient descent backpropagation)

traingdx :梯度下降自适应学习率训练函数

<4>网络配置参数

一些重要的网络配置参数如下:

net.trainparam.goal :神经网络训练的目标误差

net.trainparam.show: 显示中间结果的周期

net.trainparam.epochs :最大迭代次数

net.trainParam.lr: 学习率

(2) train函数

网络训练学习函数。

语法:[ net, tr, Y1, E ] = train( net, X, Y )

参数:

X:网络实际输入

Y:网络应有输出

tr:训练跟踪信息

Y1:网络实际输出

E:误差矩阵

(3) sim函数

语法:Y=sim(net,X)

参数:

net:网络

X:输入给网络的K×N矩阵,其中K为网络输入个数,N为数据样本数

Y:输出矩阵Q×N,其中Q为网络输出个数

  • 源代码:

% 定义输入数据矩阵P

P=[0.2452 0.1466 0.1314 0.2243 0.5523 0.6642 0.7105 0.6981 0.6821 0.6945 0.7549 0.8215 0.2415 0.3027 0;

    0.2217 0.1581 0.1408 0.2304 0.5134 0.5312 0.6819 0.7125 0.7265 0.6847 0.7826 0.8325 0.2385 0.3125 0;

    0.2525 0.1627 0.1507 0.2406 0.5502 0.5636 0.7051 0.7352 0.7459 0.7015 0.8064 0.8156 0.2216  0.2701 1;

    0.2016 0.1105 0.1243 0.1978 0.5021 0.5232 0.6819 0.6952 0.7015 0.6825 0.7825 0.7895 0.2352 0.2506 0.5;

    0.2115 0.1201 0.1312 0.2019 0.5332 0.5736 0.7029 0.7032 0.7189 0.7019 0.7965 0.8025 0.2542 0.3125 0;

    0.2335 0.1322 0.1534 0.2214 0.5623 0.5827 0.7198 0.7276 0.7359 0.7506 0.8092 0.8221 0.2601 0.3198 0;

    0.2368 0.1432 0.1653 0.2205 0.5823 0.5971 0.7136 0.7129 0.7263 0.7153 0.8091 0.8217 0.2579 0.3099 0;

   0.2342 0.1368 0.1602 0.2131 0.5726 0.5822 0.7101 0.7098 0.7127 0.7121 0.7995 0.7126 0.2301 0.2867 0.5;

   0.2113 0.1212 0.1305 0.1819 0.4952 0.5312 0.6886 0.6898 0.6999 0.7323 0.7721 0.7956 0.2234 0.2799 1;

   0.2005 0.1121 0.1207 0.1605 0.4556 0.5022 0.6553 0.6673 0.6798 0.7023 0.7521 0.7756 0.2314 0.2977 0]';

 

% 定义目标数据矩阵T

T=[0.2217 0.1581 0.1408 0.2304 0.5134 0.5312 0.6819 0.7125 0.7265 0.6847 0.7826 0.8325;

    0.2525 0.1627 0.1507 0.2406 0.5502 0.5636 0.7051 0.7352 0.7459 0.7015 0.8064 0.8156;

    0.2016 0.1105 0.1243 0.1978 0.5021 0.5232 0.6819 0.6952 0.7015 0.6825 0.7825 0.7895;

    0.2115 0.1201 0.1312 0.2019 0.5532 0.5736 0.7029 0.7032 0.7189 0.7019 0.7965 0.8025;

    0.2335 0.1322 0.1534 0.2214 0.5623 0.5827 0.7198 0.7276 0.7359 0.7506 0.8092  0.8221;

    0.2368 0.1432 0.1653 0.2205 0.5823 0.5971 0.7136 0.7129 0.7263 0.7153 0.8091 0.8217;

    0.2342 0.7368 0.1602 0.2131 0.5726 0.5822 0.7101 0.7098 0.7127 0.7121 0.7995 0.8126;

    0.2113 0.1212 0.1305 0.1819 0.4952 0.5312 0.6886 0.6898 0.6999 0.7323 0.7721 0.7956;

    0.2005 0.1121 0.1207 0.1605 0.4556 0.5022 0.6552 0.6673 0.6798 0.7023 0.7521 0.7756;

    0.2123 0.1257 0.1343 0.2079 0.5579 0.5716 0.7059 0.7145 0.7205 0.7401 0.8019 0.8136]';

threshold=[0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;];

 

% 构建网络结构

net=newff(threshold,[31,12],{'tansig','logsig'},'trainlm');

 

% 设置训练参数

net.trainParam.epochs=10000;

net.trainParam.goal=0.001;

LP.lr=0.01;

net=train(net,P,T);

 

% 定义测试数据

P_test=[0.2123 0.1257 0.1343 0.2079 0.5579 0.5716 0.7059 0.7145 0.7205 0.7401 0.8019 0.8136 0.2317 0.3936 0]';

 

% 测试并得到预测结果

y=sim(net,P_test);

 

% 定义真实结果

X=[0.2119 0.1215 0.1621 0.2161 0.6171 0.6159 0.7155 0.7201 0.7243 0.7298 0.8179 0.8229]';

 

% 计算预测误差

 z=y-X;

 c=X.\z;

 

 % 绘制预测相对误差曲线

plot(1:12,c);

grid;

title('相对误差曲线');

xlabel('时间');

ylabel('相对误差率');

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/243759.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用pysimplegui+opencv编写一个摄像头的播放器

需求 使用pysimplegui和opencv实现一个播放器&#xff0c;播放 摄像头的画面。 代码实现 import cv2 import time from typing import Iterable, NamedTuple, Optionalimport PySimpleGUI as sgclass CameraSpec(NamedTuple):name: strindex: intwidth: intheight: intfps: i…

记一次 stackoverflowerror 线上排查过程

一.线上 stackOverFlowError xxx日,突然收到线上日志关键字频繁告警 classCastException.从字面上的报警来看,仅仅是类型转换异常,查看细则发现其实是 stackOverFlowError.很多同学面试的时候总会被问到有没有遇到过线上stackOverFlowError?有么有遇到栈溢出?具体栈溢出怎么来…

网络爬虫采集工具

在当今数字化的时代&#xff0c;获取海量数据对于企业、学术界和个人都至关重要。网络爬虫成为一种强大的工具&#xff0c;能够从互联网上抓取并提取所需的信息。本文将专心分享关于网络爬虫采集数据的全面指南&#xff0c;深入探讨其原理、应用场景以及使用过程中可能遇到的挑…

【论文阅读笔记】Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation

1.介绍 Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation Swin-Unet&#xff1a;用于医学图像分割的类Unet纯Transformer 2022年发表在 Computer Vision – ECCV 2022 Workshops Paper Code 2.摘要 在过去的几年里&#xff0c;卷积神经网络&#xff…

OTA 升级软件推荐,附带MD5,CRC16,CRC32,AES算法工具

说明&#xff1a;推荐 OTA 工具软件&#xff0c;可以通过串口按 OTA 协议发送 bin 文件给 MCU,完成 bootloader 升级app 功能 , 这个软件 附带提供 MD5,CRC16,CRC32,AES 算法工具。 文档持续完善中... 1. OTA界面 2.AES.MD5.CRC界面 3.下载链接&#xff1a; 链接: https://p…

AI创作之旅:探索提示工程的奇妙世界

&#x1f482; 个人网站:【 海拥】【神级代码资源网站】【办公神器】&#x1f91f; 基于Web端打造的&#xff1a;&#x1f449;轻量化工具创作平台&#x1f485; 想寻找共同学习交流的小伙伴&#xff0c;请点击【全栈技术交流群】 在当今信息爆炸的时代&#xff0c;人工智能的发…

k8s的helm

1、在没有helm之前&#xff0c;部署deployment、service、ingress等等 2、helm的作用&#xff1a;通过打包的方式&#xff0c;deployment、service、ingress这些打包在一块&#xff0c;一键部署服务、类似于yum功能 3、helm&#xff1a;官方提供的一种类似于仓库的功能&#…

为什么电脑降价了?

周末&#xff0c;非常意外地用不到3000元买到了一款2023年度发布的华为笔记本I5,16G,500G&#xff0c;基本是主流配置&#xff0c;我非常意外&#xff0c;看了又看&#xff0c;不是什么Hwawii&#xff0c;或者Huuawe。然后也不是二手。为什么呢&#xff1f;因为在ALU和FPU之外&…

Android.mk和Android.bp的区别和转换详解

Android.mk和Android.bp的区别和转换详解 文章目录 Android.mk和Android.bp的区别和转换详解一、前言二、Android.mk和Android.bp的联系三、Android.mk和Android.bp的区别1、语法&#xff1a;2、灵活性&#xff1a;3、版本兼容性&#xff1a;4、向后兼容性&#xff1a;5、编译区…

【C++修行之道】STL(初识pair、vector)

目录 一、pair 1.1pair的定义和结构 1.2pair的嵌套 1.3pair自带排序规则 1.4代码示例 二、vector 2.1vector的定义和特性 2.2vector的初始化 一维初始化&#xff1a; 2.3vector的常用函数 2.4vector排序去重 排序: 去重&#xff1a; 示例&#xff1a; 一、pair …

CmakeList教程

一、CmakeList介绍&#xff1a; cmake 是一个跨平台、开源的构建系统。它是一个集软件构建、测试、打包于一身的软件。它使用与平台和编译器独立的配置文件来对软件编译过程进行控制。它会通过写的语句自动生成一个MakeFile,从而实现高效编译 二、CmakeList的常用指令 1.指定…

iphone5s基带部分电源部分主主电源供电及

时序: 1.,基带电源的供电&#xff0c;基带电源也叫pmu。 首先时序图说电池提供供电&#xff0c;电池是J6接口&#xff0c;视频习惯把接口称之为座子。查U2_RF芯片&#xff0c;发现供电信号为PP_BATT_VCC_CONN&#xff0c;但是没查到跟电池座子有关系&#xff0c;电池座子写的是…

回溯算法篇-01:全排列

力扣46&#xff1a;全排列 题目分析 这道题属于上一篇——“回溯算法解题框架与思路”中的 “元素不重复不可复用” 那一类中的 排列类问题。 我们来回顾一下当时是怎么说的&#xff1a; 排列和组合的区别在于&#xff0c;排列对“顺序”有要求。比如 [1,2] 和 [2,1] 是两个不…

电脑磁盘格式化了怎么恢复里面文件?多个方法任你选

在日常生活中&#xff0c;我们可能会遇到由于误操作、病毒攻击等原因导致电脑磁盘被格式化的情况。一旦发生这种情况&#xff0c;我们可能会失去重要的文件&#xff0c;给工作和生活带来很大的困扰。但是&#xff0c;不必过于担心&#xff0c;本文将为您详细介绍如何在电脑磁盘…

Python 什么是点积注意力机制;点击注意力机制代码实现;Dot-Product Attention代码实战;超详细代码实现点积注意力

1.点积注意力机制简介 点积注意力机制&#xff08;Dot-Product Attention&#xff09;是一种常用的注意力机制之一&#xff0c;通常与Seq2Seq模型中的自注意力&#xff08;Self-Attention&#xff09;机制一起使用。它用于计算查询&#xff08;Query&#xff09;和键&#xff0…

Buildroot显示uboot logo

根据之前的开机现象&#xff0c;uboot部分没有开机logo 1、Makefile配置 查看一下u-boot/tools/Makefile是否都有如下配置 # Enable all the config-independent tools ifneq ($(HOST_TOOLS_ALL),) CONFIG_LCD_LOGO y CONFIG_CMD_LOADS y CONFIG_CMD_NET y CONFIG_XWAY_SW…

一.初识Linux 1-3操作系统概述Linux初识虚拟机介绍

目录 一.初识Linux 1.操作系统概述 计算机组成 硬件&#xff1a; 软件&#xff1a; 操作系统&#xff1a; 操作系统工作流程 操作系统作用 常见的操作系统 PC端&#xff1a; 移动端&#xff1a;&#xff08;掌上操作系统&#xff09; 一.初识Linux 2.Linux初识 linu…

分布式websocket即时通信(IM)系统保证消息可靠性【第八期】

b站上面本期视频版本&#xff0c;观看视频食用更佳&#xff01;点击即可跳转,找不到视频可以直接搜索我 目前叫 呆呆呆呆梦 目前已经写的文章有。并且有对应视频版本。 git项目地址 【IM即时通信系统&#xff08;企聊聊&#xff09;】点击可跳转 sprinboot单体项目升级成sprin…

Ubuntu用gparted重新分配空间

ubuntu系统使用过程中安装系统时预先留的空间不够使用怎么办&#xff1f; 这么办&#xff01; 首先 使用df -h 查看当前空间使用情况 已经分配的空间重新规划 &#xff1f; 先将已分配的空间中的多余空间分离出来&#xff1b; 假设我想将挂载点/home下的一部分空间分给挂载…

《WebKit 技术内幕》学习之八(1):硬件加速机制

《WebKit 技术内幕》之八&#xff08;1&#xff09;&#xff1a;硬件加速机制 1 硬件加速基础 1.1 概念 这里说的硬件加速技术是指使用GPU的硬件能力来帮助渲染网页&#xff0c;因为GPU的作用主要是用来绘制3D图形并且性能特别好&#xff0c;这是它的专长所在&#xff0c;它…