大数据开发之SparkSQL

第 1 章:spark sql概述

1.1 什么是spark sql

1、spark sql是spark用于结构化数据处理的spark模块
1)半结构化数据(日志数据)
在这里插入图片描述

2)结构化数据(数据库数据)
在这里插入图片描述

1.2 为什么要有sparksql

在这里插入图片描述

hive on spark:hive既作为存储元数据又负责sql的解析优化,语法是hql语法,执行引擎编程了spark,spark负责采用rdd执行。
在这里插入图片描述

spark on hive:hive只作为存储元数据,spark负责sql解析优化,语法是spark sql语法,spark底层采用优化后的df或者ds执行。

1.3 spark sql原理

spark sql它提供了2个编程抽象,dataframe、dataset(类似spark core中的rdd)
在这里插入图片描述

1.3.1 什么是dataframe

1、dataframe是一种类似rdd的分布式数据集,类似于传统数据库中的二维表格。
2、dataframe与rdd的主要区别在于,dataframe带有schema元信息,即dataframe所表示的二维表数据集的每一列都带有名称和类型。
在这里插入图片描述

左侧的rdd[person]虽然person为类型参数,但spark框架本身不了解person类的内部结构。而右侧的dataframe却提供了详细的结构信息,使得spark sql可以清楚的指导这些数据集中包含哪些列,每列的名称和类型各是什么。
3、spark sql性能上比rdd要高。因为spark sql了解数据内部结构,从而对藏于dataframe背后的数据源以及作用域dataframe之上的变换进行了针对性的优化,最终达到大幅提升运行时效率的目标。反观rdd,由于无从得知所存数据元素的具体内部结构,spark core只能在stage层面进行简单、通用的流水线优化。
在这里插入图片描述
在这里插入图片描述

1.3.2 什么是dataset

dataset是分布式数据集。
dataset是强类型的。比如可以有dataset[car],dataset[user]。具有类型安全检查。
dataframe是dataset的特例,type dataframe=dataset[row],row是一个类型,跟car、user这些的类型一样,所有的表结构信息都用row来表示。

1.3.3 rdd、dataframe和dataset之间关系

1、发展历史
在这里插入图片描述

如果同样的数据都给到这三种数据结构,他们分别计算之后,都会给出相同的结果。不同的是他们的执行效率和执行方式。在后期的spark版本中,dataset有可能会逐步取代rdd和dataframe成为唯一的api接口。
2、三者的共性
1)rdd、dataframe、dataset全都是spark平台下的分布式弹性数据集,为处理超大型数据提供便利。
2)三者都是惰性机制,在进行创建、转换,如map方法时,不会立即执行,只有在遇到action行动算子如foreach时,三者才会开始遍历运算
3)三者有许多共同的函数,如filter,排序等
4)三者都会根据spark的内存情况自动缓存运算
5)三者都有分区概念

1.4 spark sql的特点

1、易整合
无缝的整合了sql查询和spark编程。
在这里插入图片描述

2、统一的数据访问方式
使用相同的方式连接不同的数据源
在这里插入图片描述

3、兼容hive
在已有的仓库上直接运行sql或者hql
在这里插入图片描述

4、标准的数据连接
通过jdbc或者odbc来连接
在这里插入图片描述

第2 章:spark sql编程

本章重点学习如何使用dataframe和dataset进行编程,以及他们之间的关系和转换,关于具体的sql书写不是本章的重点。

2.1 sparksession新的起始点

在老的版本中,sparksql提供两种sql查询起始点:
1、一个是sqlcontext,用于spark自己提供的sql查询
2、一个叫hivecontext,用于连接hive的查询
sparksession是spark最新的sql查询起始点,实质上是sqlcontext和hivecontext的组合,所以在sqlcontext和hivecontext上可用的api在sparksession上同样是可用使用的。
sparksession内部封装了sparkcontext,所以计算实际上是由sparkcontext完成的。当我们使用spark-shell的时候,spark框架会自动地创建一个名称叫做spark的sparksession,就像我们以前可以自动获取到一个sc来表示sparkcontext。

[atguigu@hadoop102 spark-local]$ bin/spark-shell20/09/12 11:16:35 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
Spark context Web UI available at http://hadoop102:4040
Spark context available as 'sc' (master = local[*], app id = local-1599880621394).
Spark session available as 'spark'.
Welcome to____              __/ __/__  ___ _____/ /___\ \/ _ \/ _ `/ __/  '_//___/ .__/\_,_/_/ /_/\_\   version 3.0.0/_/Using Scala version 2.12.10 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_212)
Type in expressions to have them evaluated.
Type :help for more information.

2.2 dataframe

dataframe是一种类似于rdd的分布式数据集,类似于传统数据库中的二维表格

2.2.1 创建dataframe

在spark sql中sparksession是创建dataframe和执行sql的入口,创建dataframe有三种方式:
通过spark的数据源进行创建;
从一个存在的rdd进行转换;
还可以从hive table进行查询返回;
1、从spark数据源进行创建
1)数据准备,在/opt/module/spark-local目录下创建一个user.json文件

{"age":20,"name":"qiaofeng"}
{"age":19,"name":"xuzhu"}
{"age":18,"name":"duanyu"}

2)查看spark支持创建文件的数据源格式,使用tab键查看

scala> spark.read.
csv   format   jdbc   json   load   option   options   orc   parquet   schema   table   text   textFile

3)读取json文件创建dataframe

scala> val df = spark.read.json("/opt/module/spark-local/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]

注意:如果从内存种获取数据,spark可以指导数据类型具体是什么,如果是数字,默认作为int处理;但是从文件种读取的数字,不能确定是什么类型,所以用bigint接收,可以和long类型转换,但是和int不能进行转换。
4)查看dataframe算子

scala> df.

5)展示结果

scala> df.show
+---+--------+
|age|    name|
+---+--------+
| 20|qiaofeng|
| 19|   xuzhu|
| 18|  duanyu|
+---+--------+

2、从rdd进行转换
3、hive table进行查询返回

2.2.2 sql风格语法

sql语法风格是指我们查询数据的时候使用sql语句来查询,这种风格的查询必须要有临时视图或者全局视图来辅助。
视图:对特定表的数据的查询结果重复使用。view只能查询,不能修改和插入。

1、临时视图
1)创建一个dataframe

scala> val df = spark.read.json("/opt/module/spark-local/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]

2)对dataframe创建一个临时视图

scala> df.createOrReplaceTempView("user")

3)通过sql语句实现查询全表

scala> val sqlDF = spark.sql("SELECT * FROM user")
sqlDF: org.apache.spark.sql.DataFrame = [age: bigint, name: string]4)结果展示

4)结果展示

scala> sqlDF.show
+---+--------+
|age|    name|
+---+--------+
| 20|qiaofeng|
| 19|   xuzhu|
| 18|  duanyu|
+---+--------+

5)求年龄的平均值

scala> val sqlDF = spark.sql("SELECT avg(age) from user")
sqlDF: org.apache.spark.sql.DataFrame = [avg(age): double]

6)结果展示

scala> sqlDF.show
+--------+                                                                      
|avg(age)|
+--------+
|    19.0|
+--------+

7)创建一个新会话再执行,发现视图找不到

scala> spark.newSession().sql("SELECT avg(age) from user ").show()
org.apache.spark.sql.AnalysisException: Table or view not found: user; line 1 pos 14;

注意:普通临时视图是session范围内的,如果向全局有效,可以创建全局临时视图。
2、全局视图
1)对于dataframe创建一个全局视图

scala> df.createOrReplaceGlobalTempView ("user2")

2)通过sql语句查询全表

scala> spark.sql("SELECT * FROM global_temp.user2").show()
+---+--------+
|age|    name|
+---+--------+
| 20|qiaofeng|
| 19|   xuzhu|
| 18|  duanyu|
+---+--------+

3)新建session,通过sql语句实现查询全表

scala> spark.newSession().sql("SELECT * FROM global_temp.user2").show()
+---+--------+
|age|    name|
+---+--------+
| 20|qiaofeng|
| 19|   xuzhu|
| 18|  duanyu|
+---+--------+

2.2.3 dsl风格语法

dataframe提供一个特定领域语言去管理格式化的数据,可以在scala,java,python和r种使用dsl,使用dsl语法风格不必去创建临时视图了。
1、创建一个dataframe

scala> val df = spark.read.json("/opt/module/spark-local/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]

2、查看dataframe的schema信息

scala> df.printSchema
root|-- age: Long (nullable = true)|-- name: string (nullable = true)

3、只查看“name”列数据
注意:列名要用双括号引起来,如果是单引号的话,只能在前面加一个单引号

scala> df.select("name").show()
+--------+
|  name|
+--------+
|qiaofeng|
|  xuzhu|
| duanyu|
+--------+scala> df.select('name).show
+--------+
|  name|
+--------+
|qiaofeng|
|  xuzhu|
| duanyu|
+--------+

4、查看年龄和姓名,且年龄大于18

scala> df.select("age","name").where("age>18").show
+---+--------+
|age|  name|
+---+--------+
| 20|qiaofeng|
| 19|  xuzhu|
+---+--------+

5、查看所有列

scala> df.select("*").show
+---+--------+
|age|  name|
+---+--------+
| 20| qiaofeng|
| 19|   xuzhu|
| 18|  duanyu|
+---+--------+

6、查看"name"列数据以及“age+1”数据
注意:涉及到运算的时候,每列都必须使用$,或者采用单引号表达式:单引号+字段名

scala> df.select($"name",$"age" + 1).show
scala> df.select('name, 'age + 1).show()
scala> df.select('name, 'age + 1 as "newage").show()+--------+---------+
| name  |(age + 1)|
+--------+---------+
|qiaofeng|    21|
|  xuzhu|    20|
| duanyu|    19|
+--------+---------+

7、查看”age“大于”19“的数据

scala> df.filter("age>19").show
+---+--------+
|age |  name|
+---+--------+
| 20|qiaofeng|
+---+--------+

8、按照”age“分组,查看数据条数

scala> df.groupBy("age").count.show
+---+-----+
|age|count|
+---+-----+
| 19|    1|
| 18|    1|
| 20|    1|
+---+-----+

9、求平均年龄avg(age)

scala> df.agg(avg("age")).show
+--------+
|avg(age)|
+--------+
|   19.0|
+--------+

10、求年龄总和sum(age)

scala> df.agg(max("age")).show
+--------+
|max(age)|
+--------+
|     20|
+--------+

2.3 dataset

dataset是具有强类型的数据集合,需要提供对应的类型信息。

2.3.1 创建dataset(基本数据类型)

使用基本类型的序列创建dataset。
1、将集合转换为dataset

scala> val ds = Seq(1,2,3,4,5,6).toDS
ds: org.apache.spark.sql.Dataset[Int] = [value: int]

2、查看dataset的值

scala> ds.show
+-----+
|value|
+-----+
|    1|
|    2|
|    3|
|    4|
|    5|
|    6|
+-----+

2.3.2 创建dataset(样例类序列)

使用样例类序列创建dataset。
1、创建一个user的样例类

scala> case class User(name: String, age: Long)
defined class User

2、将集合转换为dataset

scala> val caseClassDS = Seq(User("wangyuyan",18)).toDS()
caseClassDS: org.apache.spark.sql.Dataset[User] = [name: string, age: bigint]

3、查看dataset的值

scala> caseClassDS.show
+---------+---+
|     name|age|
+---------+---+
|wangyuyan|  18|
+---------+---+

注意:在实际开发的时候,很少会把序列转换成dataset,更多是通过rdd和dataframe转换来得到dataset

2.4 rdd、dataframe、dataset相互转换

在这里插入图片描述

2.4.1 idea创建sparksql工程

1、创建一个maven工程sparksqltest
2、在项目sparksqltest上点击右键,add framework support->勾选scala
3、在main下创建scala文件夹,并右键mark directory as sources root->在Scala下创建包名com.atguigu.sparksql
4、输入文件夹准备:在新建的sparksqltest项目上右键->新建input文件夹->在input文件夹上右键->新建user.json。并输入如下内容:

{"age":20,"name":"qiaofeng"}
{"age":19,"name":"xuzhu"}
{"age":18,"name":"duanyu"}

5、在pom.xml文件中添加spark-sql的依赖和scala的编译插件

<dependencies><dependency><groupId>org.apache.spark</groupId><artifactId>spark-sql_2.12</artifactId><version>3.0.0</version></dependency>
</dependencies><build>
<finalName>SparkSQLTest</finalName>
<plugins><plugin><groupId>net.alchim31.maven</groupId><artifactId>scala-maven-plugin</artifactId><version>3.4.6</version><executions><execution><goals><goal>compile</goal><goal>testCompile</goal></goals></execution></executions></plugin></plugins>
</build>

6、代码实现

package com.atguigu.sparksqlimport org.apache.spark.SparkConf
import org.apache.spark.sql.{DataFrame, SparkSession}object SparkSQL01_input {def main(args: Array[String]): Unit = {// 1 创建上下文环境配置对象val conf: SparkConf = new SparkConf().setAppName("SparkSQLTest").setMaster("local[*]")// 2 创建SparkSession对象val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()// 3 读取数据val df: DataFrame = spark.read.json("input/user.json")// 4 可视化df.show()// 5 释放资源spark.stop()}
}

2.4.2 rdd与dataframe相互转换

1、rdd转换为dataframe
手动转换:rdd.todf(“列名1”,“列名2”)
通过样例类反射转换:userrdd.map{x->user(x._1,x._2)}.todf()
2、dataframe转换为rdd
dataframe.rdd
3、在Input/目录下准备user.txt

qiaofeng,20
xuzhu,19
duanyu,18 

4、代码实现

package com.atguigu.sparksqlimport org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Row, SparkSession}
import org.apache.spark.{SparkConf, SparkContext}object SparkSQL02_RDDAndDataFrame {def main(args: Array[String]): Unit = {//TODO 1 创建SparkConf配置文件,并设置App名称val conf = new SparkConf().setAppName("SparkCoreTest").setMaster("local[*]")//TODO 2 利用SparkConf创建sc对象val sc = new SparkContext(conf)val lineRDD: RDD[String] = sc.textFile("input\\user.txt")//普通rdd,数据只有类型,没有列名(缺少元数据)val rdd: RDD[(String, Long)] = lineRDD.map {line => {val fileds: Array[String] = line.split(",")(fileds(0), fileds(1).toLong)}}//TODO 3 利用SparkConf创建sparksession对象val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()//RDD和DF、DS转换必须要导的包(隐式转换),spark指的是上面的sparkSessionimport spark.implicits._//TODO RDD=>DF//普通rdd转换成DF,需要手动为每一列补上列名(补充元数据)val df: DataFrame = rdd.toDF("name", "age")df.show()//样例类RDD,数据是一个个的样例类,有类型,有属性名(列名),不缺元数据val userRDD: RDD[User] = rdd.map {t => {User(t._1, t._2)}}//样例类RDD转换DF,直接toDF转换即可,不需要补充元数据val userDF: DataFrame = userRDD.toDF()userDF.show()//TODO DF=>RDD//DF转换成RDD,直接.rdd即可,但是要注意转换出来的rdd数据类型会变成Rowval rdd1: RDD[Row] = df.rddval userRDD2: RDD[Row] = userDF.rddrdd1.collect().foreach(println)userRDD2.collect().foreach(println)//如果想获取到row里面的数据,直接row.get(索引)即可val rdd2: RDD[(String, Long)] = rdd1.map {row => {(row.getString(0), row.getLong(1))}}rdd2.collect().foreach(println)//TODO 4 关闭资源sc.stop()}
}
case class User(name:String,age:Long)

2.4.3 rdd与dataset相互转换

1、rdd转换为dataset
rdd.map{x->user(x._1,x._2)},tods()
sparksql能够自动将包含有样例类的rdd转换成dataset,样例类定义了table的结构,样例类属性通过反射编程了表的列名。样例类可以包含诸如seq或者array等复杂的结构。
2、dataset转换为rdd
ds.rdd
3、代码实现

package com.atguigu.sparksqlimport org.apache.spark.rdd.RDD
import org.apache.spark.sql.{Dataset, SparkSession}
import org.apache.spark.{SparkConf, SparkContext}object SparkSQL03_RDDAndDataSet {def main(args: Array[String]): Unit = {//TODO 1 创建SparkConf配置文件,并设置App名称val conf = new SparkConf().setAppName("SparkCoreTest").setMaster("local[*]")//TODO 2 利用SparkConf创建sc对象val sc = new SparkContext(conf)val lineRDD: RDD[String] = sc.textFile("input\\user.txt")//普通rdd,数据只有类型,没有列名(缺少元数据)val rdd: RDD[(String, Long)] = lineRDD.map {line => {val fileds: Array[String] = line.split(",")(fileds(0), fileds(1).toLong)}}//TODO 3 利用SparkConf创建sparksession对象val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()//RDD和DF、DS转换必须要导的包(隐式转换),spark指的是上面的sparkSessionimport spark.implicits._//TODO RDD=>DS//普通rdd转DS,没办法补充元数据,因此一般不用val ds: Dataset[(String, Long)] = rdd.toDS()ds.show()//样例类RDD,数据是一个个的样例类,有类型,有属性名(列名),不缺元数据val userRDD: RDD[User] = rdd.map {t => {User(t._1, t._2)}}//样例类RDD转换DS,直接toDS转换即可,不需要补充元数据,因此转DS一定要用样例类RDDval userDs: Dataset[User] = userRDD.toDS()userDs.show()//TODO DS=>RDD//ds转成rdd,直接.rdd即可,并且ds不会改变rdd里面的数据类型val rdd1: RDD[(String, Long)] = ds.rddval userRDD2: RDD[User] = userDs.rdd//TODO 4 关闭资源sc.stop()}
}

2.4.4 dataframe与dataset相互转换

1、dataframe转为dataset
df.as[user]
2、dataset转换为dataframe
ds.todf
3、代码实现

package com.atguigu.sparksqlimport org.apache.spark.SparkConf
import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}object SparkSQL04_DataFrameAndDataSet {def main(args: Array[String]): Unit = {// 1 创建上下文环境配置对象val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkSQLTest")// 2 创建SparkSession对象val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()// 3 读取数据val df: DataFrame = spark.read.json("input/user.json")//4.1 RDD和DataFrame、DataSet转换必须要导的包import spark.implicits._// 4.2 DataFrame 转换为DataSetval userDataSet: Dataset[User] = df.as[User]userDataSet.show()// 4.3 DataSet转换为DataFrameval userDataFrame: DataFrame = userDataSet.toDF()userDataFrame.show()// 5 释放资源spark.stop()}
}case class User(name: String,age: Long)

2.5 用户自定义函数

2.5.1 udf

1、udf:一行进入,一行出
2、代码实现

package com.atguigu.sparksqlimport org.apache.spark.SparkConf
import org.apache.spark.sql.{DataFrame, SparkSession}object SparkSQL05_UDF{def main(args: Array[String]): Unit = {// 1 创建上下文环境配置对象val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkSQLTest")// 2 创建SparkSession对象val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()// 3 读取数据val df: DataFrame = spark.read.json("input/user.json")// 4 创建DataFrame临时视图df.createOrReplaceTempView("user")// 5 注册UDF函数。功能:在数据前添加字符串“Name:”spark.udf.register("addName", (x:String) => "Name:"+ x)// 6 调用自定义UDF函数spark.sql("select addName(name), age from user").show()// 7 释放资源spark.stop()}
}

2.5.2 udaf

1、udaf:输入多行,返回一行
2、spark3.x推荐使用extends aggregator自定义udaf,属于强类型的dataset方式
3、spark2.x使用extends userdefinedaggregatefunction,数以弱类型的dataframe
4、案例:
需求:实现求平均年龄,自定义udaf,myavg(age)
1)自定义聚合函数实现-强类型

package com.atguigu.sparksqlimport org.apache.spark.SparkConf
import org.apache.spark.sql.expressions.Aggregator
import org.apache.spark.sql.{DataFrame, Encoder, Encoders, SparkSession, functions}object SparkSQL06_UDAF {def main(args: Array[String]): Unit = {// 1 创建上下文环境配置对象val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkSQLTest")// 2 创建SparkSession对象val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()// 3 读取数据val df: DataFrame = spark.read.json("input/user.json")// 4 创建DataFrame临时视图df.createOrReplaceTempView("user")// 5 注册UDAFspark.udf.register("myAvg", functions.udaf(new MyAvgUDAF()))// 6 调用自定义UDAF函数spark.sql("select myAvg(age) from user").show()// 7 释放资源spark.stop()}
}//输入数据类型
case class Buff(var sum: Long, var count: Long)/*** 1,20岁; 2,19岁; 3,18岁* IN:聚合函数的输入类型:Long* Buff : sum = (18+19+20)  count = 1+1+1* OUT:聚合函数的输出类型:Double  (18+19+20) / 3*/
class MyAvgUDAF extends Aggregator[Long, Buff, Double] {// 初始化缓冲区override def zero: Buff = Buff(0L, 0L)// 将输入的年龄和缓冲区的数据进行聚合override def reduce(buff: Buff, age: Long): Buff = {buff.sum = buff.sum + agebuff.count = buff.count + 1buff}// 多个缓冲区数据合并override def merge(buff1: Buff, buff2: Buff): Buff = {buff1.sum = buff1.sum + buff2.sumbuff1.count = buff1.count + buff2.countbuff1}// 完成聚合操作,获取最终结果override def finish(buff: Buff): Double = {buff.sum.toDouble / buff.count}// SparkSQL对传递的对象的序列化操作(编码)// 自定义类型就是product   自带类型根据类型选择override def bufferEncoder: Encoder[Buff] = Encoders.productoverride def outputEncoder: Encoder[Double] = Encoders.scalaDouble
}

第 3 章:sparksql数据的加载和保存

3.1 加载数据

1、加载数据通用方法
spark.read.load是加载数据的通用方式
2、代码实现

package com.atguigu.sparksqlimport org.apache.spark.SparkConf
import org.apache.spark.sql._
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types._object SparkSQL08_Load{def main(args: Array[String]): Unit = {// 1 创建上下文环境配置对象val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkSQLTest")// 2 创建SparkSession对象val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()// 3.1 spark.read直接读取数据:csv   format   jdbc   json   load   option// options   orc   parquet   schema   table   text   textFile// 注意:加载数据的相关参数需写到上述方法中,// 如:textFile需传入加载数据的路径,jdbc需传入JDBC相关参数。spark.read.json("input/user.json").show()// 3.2 format指定加载数据类型// spark.read.format("…")[.option("…")].load("…")// format("…"):指定加载的数据类型,包括"csv"、"jdbc"、"json"、"orc"、"parquet"和"text"// load("…"):在"csv"、"jdbc"、"json"、"orc"、"parquet"和"text"格式下需要传入加载数据路径// option("…"):在"jdbc"格式下需要传入JDBC相应参数,url、user、password和dbtablespark.read.format("json").load ("input/user.json").show// 4 释放资源spark.stop()}
}

3.2 保存数据

1、保存数据通用方法
df.write.save是保存数据的通用方法
2、代码实现

package com.atguigu.sparksqlimport org.apache.spark.SparkConf
import org.apache.spark.sql._object SparkSQL09_Save{def main(args: Array[String]): Unit = {// 1 创建上下文环境配置对象val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkSQLTest")// 2 创建SparkSession对象val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()// 3 获取数据val df: DataFrame = spark.read.json("input/user.json")// 4.1 df.write.保存数据:csv  jdbc   json  orc   parquet  text// 注意:保存数据的相关参数需写到上述方法中。如:text需传入加载数据的路径,JDBC需传入JDBC相关参数。// 默认保存为parquet文件(可以修改conf.set("spark.sql.sources.default","json"))df.write.save("output")// 默认读取文件parquetspark.read.load("output").show()// 4.2 format指定保存数据类型// df.write.format("…")[.option("…")].save("…")// format("…"):指定保存的数据类型,包括"csv"、"jdbc"、"json"、"orc"、"parquet"和"text"。// save ("…"):在"csv"、"orc"、"parquet"和"text"(单列DF)格式下需要传入保存数据的路径。// option("…"):在"jdbc"格式下需要传入JDBC相应参数,url、user、password和dbtabledf.write.format("json").save("output2")// 4.3 可以指定为保存格式,直接保存,不需要再调用save了df.write.json("output1")// 4.4 如果文件已经存在则追加df.write.mode("append").json("output2")// 如果文件已经存在则忽略(文件存在不报错,也不执行;文件不存在,创建文件)df.write.mode("ignore").json("output2")// 如果文件已经存在则覆盖df.write.mode("overwrite").json("output2")// 默认default:如果文件已经存在则抛出异常// path file:/E:/ideaProject2/SparkSQLTest/output2 already exists.;df.write.mode("error").json("output2")// 5 释放资源spark.stop()}
}

3.3 与mysql交互

1、导入依赖

<dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>5.1.27</version>
</dependency>

2、从mysql读数据

package com.atguigu.sparksqlimport org.apache.spark.SparkConf
import org.apache.spark.sql._object SparkSQL10_MySQL_Read{def main(args: Array[String]): Unit = {// 1 创建上下文环境配置对象val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkSQLTest")// 2 创建SparkSession对象val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()// 3.1 通用的load方法读取mysql的表数据val df: DataFrame = spark.read.format("jdbc").option("url", "jdbc:mysql://hadoop102:3306/gmall").option("driver", "com.mysql.jdbc.Driver").option("user", "root").option("password", "000000").option("dbtable", "user_info").load()// 3.2 创建视图df.createOrReplaceTempView("user")// 3.3 查询想要的数据spark.sql("select id, name from user").show()// 4 释放资源spark.stop()}
}

3、向mysql写数据

package com.atguigu.sparksqlimport org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.sql._object SparkSQL11_MySQL_Write {def main(args: Array[String]): Unit = {// 1 创建上下文环境配置对象val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkSQLTest")// 2 创建SparkSession对象val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()// 3 准备数据// 注意:id是主键,不能和MySQL数据库中的id重复val rdd: RDD[User] = spark.sparkContext.makeRDD(List(User(3000, "zhangsan"), User(3001, "lisi")))val ds: Dataset[User] = rdd.toDS// 4 向MySQL中写入数据ds.write.format("jdbc").option("url", "jdbc:mysql://hadoop102:3306/gmall").option("driver", "com.mysql.jdbc.Driver").option("user", "root").option("password", "000000").option("dbtable", "user_info").mode(SaveMode.Append).save()// 5 释放资源spark.stop()}case class User(id: Int, name: String)
}

3.4 与hive交互

sparksql可以采用内嵌hive,也可以采用外部hive。企业开发中,通常采用外部hive。

3.4.1 内嵌hive应用

内嵌hive,元数据存储在derby数据库
1、如果使用spark内嵌的hive,则什么都不用做,直接使用即可。

[atguigu@hadoop102 spark-local]$ bin/spark-shellscala> spark.sql("show tables").show

注意:执行完后,发现多了$spark_home/metastore_db和derby.log,用于存储元数据。
2、创建一个表

scala> spark.sql("create table user(id int, name string)")

注意:执行完后,发现多了$spark_home/spark-warehouse/user,用于存储数据库数据。
3、查看数据库

scala> spark.sql("show tables").show

4、向表中插入数据

scala> spark.sql("insert into user values(1,'zs')")

5、查询数据

scala> spark.sql("select * from user").show

注意:然而在实际使用中,几乎没有任何人会使用内置的hive,因为元数据存储在derby数据库,不支持多客户端访问。

3.4.2 外部hive应用

如果spark要接管hive外部已经部署好的hive,需要通过一下几个步骤。
1、为了说明内嵌hive和外部hive区别:删除内嵌hive的metastore_db和spark-warehouse

[atguigu@hadoop102 spark-local]$ rm -rf metastore_db/ spark-warehouse/

2、确定原有hive是正常工作的

[atguigu@hadoop102 hadoop-3.1.3]$ sbin/start-dfs.sh
[atguigu@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh[atguigu@hadoop102 hive]$ bin/hive

3、需要把hive-site.xml拷贝到spark的conf/目录下

[atguigu@hadoop102 conf]$ cp hive-site.xml /opt/module/spark-local/conf/

4、如果以前hive-site.xml文件中,配置过tez相关信息,注释掉(不是必须)
5、把mysql的驱动copy到spark的jars/目录下

[atguigu@hadoop102 software]$ cp mysql-connector-java-5.1.48.jar /opt/module/spark-local/jars/

6、需要提前启动hive服务,/opt/module/hive/bin/hiveservices.sh start(不是必须)
7、如果访问不到hdfs,则需把core-site.xml和hdfs-site.xml拷贝到conf/目录(不是必须)
8、启动spark-shell

[atguigu@hadoop102 spark-local]$ bin/spark-shell

9、查询表

scala> spark.sql("show tables").show

10、创建一个表

scala> spark.sql("create table student(id int, name string)")

11、向表中插入数据

scala> spark.sql("insert into student values(1,'zs')")

12、查询数据

scala> spark.sql("select * from student").show

3.4.3 运行spark sql cli

spark sql cli可以方便的在本地下运行hive元数据服务以及从命令行执行查询任务。在spark目录下执行如下命令启动spark sql cli,直接执行sql语句,类型hive窗口。

[atguigu@hadoop102 spark-local]$ bin/spark-sqlspark-sql (default)> show tables;

3.4.4 idea操作外部hive

1、添加依赖

<dependencies><dependency><groupId>org.apache.spark</groupId><artifactId>spark-sql_2.12</artifactId><version>3.0.0</version></dependency><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>5.1.27</version></dependency><dependency><groupId>org.apache.spark</groupId><artifactId>spark-hive_2.12</artifactId><version>3.0.0</version></dependency>
</dependencies>

2、拷贝hive-site.xml到resources目录(如果需要操作hadoop,需要拷贝hdfs-site.xml、core-site.xml、yarn-site.xml)
3、代码实现

package com.atguigu.sparksqlimport org.apache.spark.SparkConf
import org.apache.spark.sql._object SparkSQL12_Hive {def main(args: Array[String]): Unit = {System.setProperty("HADOOP_USER_NAME","atguigu")// 1 创建上下文环境配置对象val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkSQLTest")// 2 创建SparkSession对象val spark: SparkSession = SparkSession.builder().enableHiveSupport().config(conf).getOrCreate()// 3 连接外部Hive,并进行操作spark.sql("show tables").show()spark.sql("create table user3(id int, name string)")spark.sql("insert into user3 values(1,'zs')")spark.sql("select * from user3").show// 4 释放资源spark.stop()}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/244616.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Eyes Wide Shut? Exploring the Visual Shortcomings of Multimodal LLMs

大开眼界&#xff1f;探索多模态模型种视觉编码器的缺陷。 论文中指出&#xff0c;上面这些VQA问题&#xff0c;人类可以瞬间给出正确的答案&#xff0c;但是多模态给出的结果却是错误的。是哪个环节出了问题呢&#xff1f;视觉编码器的问题&#xff1f;大语言模型出现了幻觉&…

计算机网络基础概念解释

​ 1. 什么是网络 随着时代的发展&#xff0c;越来越需要计算机之间互相通信&#xff0c;共享软件和数据&#xff0c;即以多个计算机协同⼯作来完成业务&#xff0c;于是有了网络互连。 网络互连&#xff1a;将多台计算机连接在⼀起&#xff0c;完成数据共享。 数据共享本质是…

GPT科研应用与AI绘图及论文高效写作

详情点击链接&#xff1a;GPT科研应用与AI绘图及论文高效写作 一OpenAI 1.最新大模型GPT-4 Turbo 2.最新发布的高级数据分析&#xff0c;AI画图&#xff0c;图像识别&#xff0c;文档API 3.GPT Store 4.从0到1创建自己的GPT应用 5. 模型Gemini以及大模型Claude2二定制自己…

论文阅读笔记AI篇 —— Transformer模型理论+实战 (三)

论文阅读笔记AI篇 —— Transformer模型理论实战 &#xff08;三&#xff09; 第三遍阅读&#xff08;精读&#xff09;3.1 Attention和Self-Attention的区别&#xff1f;3.2 Transformer是如何进行堆叠的&#xff1f;3.3 如何理解Positional Encoding&#xff1f;3.x 文章涉及…

常用电子器件学习——MOS管

MOS管介绍 MOS&#xff0c;是MOSFET的缩写。MOSFET 金属-氧化物半导体场效应晶体管&#xff0c;简称金氧半场效晶体管&#xff08;Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET&#xff09;。 一般是金属(metal)—氧化物(oxide)—半导体(semiconductor)场效应晶…

【Unity学习笔记】Unity TestRunner使用

转载请注明出处&#xff1a;&#x1f517;https://blog.csdn.net/weixin_44013533/article/details/135733479 作者&#xff1a;CSDN|Ringleader| 参考&#xff1a; Input testingGetting started with Unity Test FrameworkHowToRunUnityUnitTest如果对Unity的newInputSystem感…

qnx 上screen + egl + opengles 最简实例

文章目录 前言一、qnx 上的窗口系统——screen二、screen + egl + opengles 最简实例1.使用 addvariant 命令创建工程目录2. 添加源码文件3. common.mk 文件4. 编译与执行总结参考资料前言 本文主要介绍如何在QNX 系统上使用egl和opengles 控制GPU渲染一个三角形并显示到屏幕上…

【Flink-CDC】Flink CDC 介绍和原理概述

【Flink-CDC】Flink CDC 介绍和原理概述 1&#xff09;基于查询的 CDC 和基于日志的 CDC2&#xff09;Flink CDC3&#xff09;Flink CDC原理简述4&#xff09;基于 Flink SQL CDC 的数据同步方案实践4.1.案例 1 : Flink SQL CDC JDBC Connector4.2.案例 2 : CDC Streaming ETL…

threejs学习

重要概念&#xff08;场景、相机、渲染器&#xff09; 如下图所示&#xff0c;我们最终看到浏览器上生成的内容是通过虚拟场景和虚拟相机被渲染器渲染后的结果&#xff0c;下面首先介绍这三个概念&#xff0c;将贯穿所有简单复杂的threejs项目。 场景 Scene 虚拟的3D场景&a…

Linux中文件属性的获取(stat、chmod、Istat、fstat函数的使用)

修改文件权限 函数如下&#xff1a; chmod/fchmod函数用来修改文件的访问权限: #include <sys/stat.h> int chmod(const char *path, mode_t mode); int fchmod(int fd, mode_t mode); 成功时返回0&#xff1b;出错时返回EOF 注意&#xff1a;在vmware和windows共享的文…

【2024-01-22】某极验3流程分析-滑块验证码

声明&#xff1a;该专栏涉及的所有案例均为学习使用&#xff0c;严禁用于商业用途和非法用途&#xff0c;否则由此产生的一切后果均与作者无关&#xff01;如有侵权&#xff0c;请私信联系本人删帖&#xff01; 文章目录 一、前言二、抓包流程分析1.刷新页面2.点击按钮进行验证…

PyTorch各种损失函数解析:深度学习模型优化的关键(2)

目录 详解pytorch中各种Loss functions mse_loss 用途 用法 使用技巧 注意事项 参数 数学理论公式 代码演示 margin_ranking_loss 用途 用法 使用技巧 注意事项 参数 数学理论公式 代码演示 multilabel_margin_loss 用途 用法 使用技巧 注意事项 参数 …

代码随想录第十五天| ● 层序遍历 10 ● 226.翻转二叉树 ● 101.对称二叉树

文章目录 层序遍历102. 二叉树的层序遍历思路一&#xff1a;递归思路二&#xff1a;层序遍历-迭代-借助队列 107. 二叉树的层序遍历 II思路&#xff1a;层序遍历后翻转数组result即可 199.二叉树的右视图思路&#xff1a;通过list数组储存每一层末尾值 637.二叉树的层平均值思路…

class_10:this关键字

this关键字是指向调用对象的指针 #include <iostream> #include <iostream> using namespace std;class Car{ public://成员数据string brand; //品牌int year; //年限//构造函数名与类名相同Car(string brand,int year){cout<<"构造函数中&#…

Element中的el-input-number+SpringBoot+mysql

1、编写模板 <el-form ref"form" label-width"100px"><el-form-item label"商品id&#xff1a;"><el-input v-model"id" disabled></el-input></el-form-item><el-form-item label"商品名称&a…

【Web前端开发基础】前端基础布局之百分比布局、flex布局

前端基础布局 目录 前端基础布局布局简介盒模型1. 标准盒模型2. 怪异盒模型3. 解决方案4. 代码示例 常见的布局单位百分比布局flex布局一、Flex布局是什么&#xff1f;二、基本概念三、容器属性flex-direction属性&#xff1a;决定主轴的方向&#xff08;即项目的排列方向&…

【数据结构】链表(单链表与双链表实现+原理+源码)

博主介绍&#xff1a;✌全网粉丝喜爱、前后端领域优质创作者、本质互联网精神、坚持优质作品共享、掘金/腾讯云/阿里云等平台优质作者、擅长前后端项目开发和毕业项目实战✌有需要可以联系作者我哦&#xff01; &#x1f345;附上相关C语言版源码讲解&#x1f345; &#x1f44…

开始学习Vue2(组件的生命周期和数据共享)

一、组件的生命周期 1. 生命周期 & 生命周期函数 生命周期&#xff08;Life Cycle&#xff09;是指一个组件从创建 -> 运行 -> 销毁的整个阶段&#xff0c;强调的是一个时间段。 生命周期函数&#xff1a;是由 vue 框架提供的内置函数&#xff0c;会伴随着 组件…

2024/1/24HTML学习:路径

路径 3.2.1路径的介绍 加载图片&#xff0c;需要找到对应的图片。 通过一定的路径 路径分两种 绝对路径&#xff08;了解&#xff09;相对路径&#xff08;常用&#xff09; 绝对路径&#xff1a;绝对位置&#xff0c;从盘符开始的路径 1.盘符开头D:\....................…

java开发——《并发编程》

目录 一.jmm 二.并发了什么 1.只有一个核&#xff08;单核&#xff09;并发还有没有意义 2.单核&#xff0c;还有什么可见性问题 3.并发和并行 三.volitaile 1.变量的可见性问题 2.原因是什么 3.本次修改的变量直接刷到主内存 4.声明其他内存对于这个地址的缓存无效 …