20240131在WIN10下配置whisper

20240131在WIN10下配置whisper
2024/1/31 18:25


首先你要有一张NVIDIA的显卡,比如我用的PDD拼多多的二手GTX1080显卡。【并且极其可能是矿卡!】800¥
2、请正确安装好NVIDIA最新的545版本的驱动程序和CUDA。
2、安装Torch
3、配置whisper


https://blog.csdn.net/m0_52156129/article/details/129263703
如何在你的电脑上完成whisper的简单部署

【根据你的位置或者网速,你下载的速度可能会很慢或者中断,重来即可!^_】
https://pytorch.org/get-started/locally/
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu118
pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu121


START LOCALLY
Select your preferences and run the install command. Stable represents the most currently tested and supported version of PyTorch. This should be suitable for many users. Preview is available if you want the latest, not fully tested and supported, builds that are generated nightly. Please ensure that you have met the prerequisites below (e.g., numpy), depending on your package manager. Anaconda is our recommended package manager since it installs all dependencies. You can also install previous versions of PyTorch. Note that LibTorch is only available for C++.

NOTE: Latest PyTorch requires Python 3.8 or later. For more details, see Python section below.


C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2023 NVIDIA Corporation
Built on Tue_Jun_13_19:42:34_Pacific_Daylight_Time_2023
Cuda compilation tools, release 12.2, V12.2.91
Build cuda_12.2.r12.2/compiler.32965470_0

C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu121
C:\Users\wb491>pip install -U openai-whisper
C:\Users\wb491>whisper -h
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>whisper Utopia.AU.S01E04.Onwards.and.Upwards.1080p.WEB-DL.AAC2.0.H.264-ABH.mkv --model small --language Chinese


LOG:

Microsoft Windows [版本 10.0.19045.3930]
(c) Microsoft Corporation。保留所有权利。

C:\Users\wb491>pip install -U openai-whisper
Collecting openai-whisper
  Downloading openai-whisper-20231117.tar.gz (798 kB)
     ---------------------------------------- 798.6/798.6 kB 2.2 MB/s eta 0:00:00
  Installing build dependencies ... done
  Getting requirements to build wheel ... done
  Preparing metadata (pyproject.toml) ... done
Collecting numba (from openai-whisper)
  Downloading numba-0.58.1-cp38-cp38-win_amd64.whl.metadata (2.8 kB)
Requirement already satisfied: numpy in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from openai-whisper) (1.24.4)
Requirement already satisfied: torch in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from openai-whisper) (1.8.1)
Collecting tqdm (from openai-whisper)
  Downloading tqdm-4.66.1-py3-none-any.whl.metadata (57 kB)
     ---------------------------------------- 57.6/57.6 kB ? eta 0:00:00
Collecting more-itertools (from openai-whisper)
  Downloading more_itertools-10.2.0-py3-none-any.whl.metadata (34 kB)
Collecting tiktoken (from openai-whisper)
  Downloading tiktoken-0.5.2-cp38-cp38-win_amd64.whl.metadata (6.8 kB)
Collecting llvmlite<0.42,>=0.41.0dev0 (from numba->openai-whisper)
  Downloading llvmlite-0.41.1-cp38-cp38-win_amd64.whl.metadata (4.9 kB)
Collecting importlib-metadata (from numba->openai-whisper)
  Downloading importlib_metadata-7.0.1-py3-none-any.whl.metadata (4.9 kB)
Collecting regex>=2022.1.18 (from tiktoken->openai-whisper)
  Downloading regex-2023.12.25-cp38-cp38-win_amd64.whl.metadata (41 kB)
     ---------------------------------------- 42.0/42.0 kB ? eta 0:00:00
Collecting requests>=2.26.0 (from tiktoken->openai-whisper)
  Downloading requests-2.31.0-py3-none-any.whl.metadata (4.6 kB)
Requirement already satisfied: typing-extensions in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from torch->openai-whisper) (4.9.0)
Collecting colorama (from tqdm->openai-whisper)
  Downloading colorama-0.4.6-py2.py3-none-any.whl (25 kB)
Collecting charset-normalizer<4,>=2 (from requests>=2.26.0->tiktoken->openai-whisper)
  Downloading charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl.metadata (34 kB)
Collecting idna<4,>=2.5 (from requests>=2.26.0->tiktoken->openai-whisper)
  Downloading idna-3.6-py3-none-any.whl.metadata (9.9 kB)
Collecting urllib3<3,>=1.21.1 (from requests>=2.26.0->tiktoken->openai-whisper)
  Downloading urllib3-2.2.0-py3-none-any.whl.metadata (6.4 kB)
Collecting certifi>=2017.4.17 (from requests>=2.26.0->tiktoken->openai-whisper)
  Downloading certifi-2023.11.17-py3-none-any.whl.metadata (2.2 kB)
Collecting zipp>=0.5 (from importlib-metadata->numba->openai-whisper)
  Downloading zipp-3.17.0-py3-none-any.whl.metadata (3.7 kB)
Downloading more_itertools-10.2.0-py3-none-any.whl (57 kB)
   ---------------------------------------- 57.0/57.0 kB 2.9 MB/s eta 0:00:00
Downloading numba-0.58.1-cp38-cp38-win_amd64.whl (2.6 MB)
   ---------------------------------------- 2.6/2.6 MB 15.2 MB/s eta 0:00:00
Downloading tiktoken-0.5.2-cp38-cp38-win_amd64.whl (786 kB)
   ---------------------------------------- 786.4/786.4 kB 48.5 MB/s eta 0:00:00
Downloading tqdm-4.66.1-py3-none-any.whl (78 kB)
   ---------------------------------------- 78.3/78.3 kB 4.3 MB/s eta 0:00:00
Downloading llvmlite-0.41.1-cp38-cp38-win_amd64.whl (28.1 MB)
   ---------------------------------------- 28.1/28.1 MB 40.9 MB/s eta 0:00:00
Downloading regex-2023.12.25-cp38-cp38-win_amd64.whl (269 kB)
   ---------------------------------------- 269.5/269.5 kB 16.2 MB/s eta 0:00:00
Downloading requests-2.31.0-py3-none-any.whl (62 kB)
   ---------------------------------------- 62.6/62.6 kB ? eta 0:00:00
Downloading importlib_metadata-7.0.1-py3-none-any.whl (23 kB)
Downloading certifi-2023.11.17-py3-none-any.whl (162 kB)
   ---------------------------------------- 162.5/162.5 kB 10.2 MB/s eta 0:00:00
Downloading charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl (99 kB)
   ---------------------------------------- 99.6/99.6 kB ? eta 0:00:00
Downloading idna-3.6-py3-none-any.whl (61 kB)
   ---------------------------------------- 61.6/61.6 kB 3.2 MB/s eta 0:00:00
Downloading urllib3-2.2.0-py3-none-any.whl (120 kB)
   ---------------------------------------- 120.9/120.9 kB 7.4 MB/s eta 0:00:00
Downloading zipp-3.17.0-py3-none-any.whl (7.4 kB)
Building wheels for collected packages: openai-whisper
  Building wheel for openai-whisper (pyproject.toml) ... done
  Created wheel for openai-whisper: filename=openai_whisper-20231117-py3-none-any.whl size=801375 sha256=0b59001c7b0cf9b553836246ea71e0c10b01936089a7a2ee3e5c031eba9277df
  Stored in directory: c:\users\wb491\appdata\local\pip\cache\wheels\d2\33\5e\ab7fe45178ca9489707f18a89fd9a22611b656edf804b3cf53
Successfully built openai-whisper
Installing collected packages: zipp, urllib3, regex, more-itertools, llvmlite, idna, colorama, charset-normalizer, certifi, tqdm, requests, importlib-metadata, tiktoken, numba, openai-whisper
Successfully installed certifi-2023.11.17 charset-normalizer-3.3.2 colorama-0.4.6 idna-3.6 importlib-metadata-7.0.1 llvmlite-0.41.1 more-itertools-10.2.0 numba-0.58.1 openai-whisper-20231117 regex-2023.12.25 requests-2.31.0 tiktoken-0.5.2 tqdm-4.66.1 urllib3-2.2.0 zipp-3.17.0

C:\Users\wb491>
C:\Users\wb491>
C:\Users\wb491>whisper -h
usage: whisper [-h] [--model MODEL] [--model_dir MODEL_DIR] [--device DEVICE] [--output_dir OUTPUT_DIR] [--output_format {txt,vtt,srt,tsv,json,all}] [--verbose VERBOSE] [--task {transcribe,translate}]
               [--language {af,am,ar,as,az,ba,be,bg,bn,bo,br,bs,ca,cs,cy,da,de,el,en,es,et,eu,fa,fi,fo,fr,gl,gu,ha,haw,he,hi,hr,ht,hu,hy,id,is,it,ja,jw,ka,kk,km,kn,ko,la,lb,ln,lo,lt,lv,mg,mi,mk,ml,mn,mr,ms,mt,my,ne,nl,nn,no,oc,pa,pl,ps,pt,ro,ru,sa,sd,si,sk,sl,sn,so,sq,sr,su,sv,sw,ta,te,tg,th,tk,tl,tr,tt,uk,ur,uz,vi,yi,yo,yue,zh,Afrikaans,Albanian,Amharic,Arabic,Armenian,Assamese,Azerbaijani,Bashkir,Basque,Belarusian,Bengali,Bosnian,Breton,Bulgarian,Burmese,Cantonese,Castilian,Catalan,Chinese,Croatian,Czech,Danish,Dutch,English,Estonian,Faroese,Finnish,Flemish,French,Galician,Georgian,German,Greek,Gujarati,Haitian,Haitian Creole,Hausa,Hawaiian,Hebrew,Hindi,Hungarian,Icelandic,Indonesian,Italian,Japanese,Javanese,Kannada,Kazakh,Khmer,Korean,Lao,Latin,Latvian,Letzeburgesch,Lingala,Lithuanian,Luxembourgish,Macedonian,Malagasy,Malay,Malayalam,Maltese,Mandarin,Maori,Marathi,Moldavian,Moldovan,Mongolian,Myanmar,Nepali,Norwegian,Nynorsk,Occitan,Panjabi,Pashto,Persian,Polish,Portuguese,Punjabi,Pushto,Romanian,Russian,Sanskrit,Serbian,Shona,Sindhi,Sinhala,Sinhalese,Slovak,Slovenian,Somali,Spanish,Sundanese,Swahili,Swedish,Tagalog,Tajik,Tamil,Tatar,Telugu,Thai,Tibetan,Turkish,Turkmen,Ukrainian,Urdu,Uzbek,Valencian,Vietnamese,Welsh,Yiddish,Yoruba}]
               [--temperature TEMPERATURE] [--best_of BEST_OF] [--beam_size BEAM_SIZE] [--patience PATIENCE] [--length_penalty LENGTH_PENALTY] [--suppress_tokens SUPPRESS_TOKENS] [--initial_prompt INITIAL_PROMPT]
               [--condition_on_previous_text CONDITION_ON_PREVIOUS_TEXT] [--fp16 FP16] [--temperature_increment_on_fallback TEMPERATURE_INCREMENT_ON_FALLBACK] [--compression_ratio_threshold COMPRESSION_RATIO_THRESHOLD]
               [--logprob_threshold LOGPROB_THRESHOLD] [--no_speech_threshold NO_SPEECH_THRESHOLD] [--word_timestamps WORD_TIMESTAMPS] [--prepend_punctuations PREPEND_PUNCTUATIONS] [--append_punctuations APPEND_PUNCTUATIONS]
               [--highlight_words HIGHLIGHT_WORDS] [--max_line_width MAX_LINE_WIDTH] [--max_line_count MAX_LINE_COUNT] [--max_words_per_line MAX_WORDS_PER_LINE] [--threads THREADS]
               audio [audio ...]

positional arguments:
  audio                 audio file(s) to transcribe

optional arguments:
  -h, --help            show this help message and exit
  --model MODEL         name of the Whisper model to use (default: small)
  --model_dir MODEL_DIR
                        the path to save model files; uses ~/.cache/whisper by default (default: None)
  --device DEVICE       device to use for PyTorch inference (default: cpu)
  --output_dir OUTPUT_DIR, -o OUTPUT_DIR
                        directory to save the outputs (default: .)
  --output_format {txt,vtt,srt,tsv,json,all}, -f {txt,vtt,srt,tsv,json,all}
                        format of the output file; if not specified, all available formats will be produced (default: all)
  --verbose VERBOSE     whether to print out the progress and debug messages (default: True)
  --task {transcribe,translate}
                        whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate') (default: transcribe)
  --language {af,am,ar,as,az,ba,be,bg,bn,bo,br,bs,ca,cs,cy,da,de,el,en,es,et,eu,fa,fi,fo,fr,gl,gu,ha,haw,he,hi,hr,ht,hu,hy,id,is,it,ja,jw,ka,kk,km,kn,ko,la,lb,ln,lo,lt,lv,mg,mi,mk,ml,mn,mr,ms,mt,my,ne,nl,nn,no,oc,pa,pl,ps,pt,ro,ru,sa,sd,si,sk,sl,sn,so,sq,sr,su,sv,sw,ta,te,tg,th,tk,tl,tr,tt,uk,ur,uz,vi,yi,yo,yue,zh,Afrikaans,Albanian,Amharic,Arabic,Armenian,Assamese,Azerbaijani,Bashkir,Basque,Belarusian,Bengali,Bosnian,Breton,Bulgarian,Burmese,Cantonese,Castilian,Catalan,Chinese,Croatian,Czech,Danish,Dutch,English,Estonian,Faroese,Finnish,Flemish,French,Galician,Georgian,German,Greek,Gujarati,Haitian,Haitian Creole,Hausa,Hawaiian,Hebrew,Hindi,Hungarian,Icelandic,Indonesian,Italian,Japanese,Javanese,Kannada,Kazakh,Khmer,Korean,Lao,Latin,Latvian,Letzeburgesch,Lingala,Lithuanian,Luxembourgish,Macedonian,Malagasy,Malay,Malayalam,Maltese,Mandarin,Maori,Marathi,Moldavian,Moldovan,Mongolian,Myanmar,Nepali,Norwegian,Nynorsk,Occitan,Panjabi,Pashto,Persian,Polish,Portuguese,Punjabi,Pushto,Romanian,Russian,Sanskrit,Serbian,Shona,Sindhi,Sinhala,Sinhalese,Slovak,Slovenian,Somali,Spanish,Sundanese,Swahili,Swedish,Tagalog,Tajik,Tamil,Tatar,Telugu,Thai,Tibetan,Turkish,Turkmen,Ukrainian,Urdu,Uzbek,Valencian,Vietnamese,Welsh,Yiddish,Yoruba}
                        language spoken in the audio, specify None to perform language detection (default: None)
  --temperature TEMPERATURE
                        temperature to use for sampling (default: 0)
  --best_of BEST_OF     number of candidates when sampling with non-zero temperature (default: 5)
  --beam_size BEAM_SIZE
                        number of beams in beam search, only applicable when temperature is zero (default: 5)
  --patience PATIENCE   optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search (default: None)
  --length_penalty LENGTH_PENALTY
                        optional token length penalty coefficient (alpha) as in https://arxiv.org/abs/1609.08144, uses simple length normalization by default (default: None)
  --suppress_tokens SUPPRESS_TOKENS
                        comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations (default: -1)
  --initial_prompt INITIAL_PROMPT
                        optional text to provide as a prompt for the first window. (default: None)
  --condition_on_previous_text CONDITION_ON_PREVIOUS_TEXT
                        if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop
                        (default: True)
  --fp16 FP16           whether to perform inference in fp16; True by default (default: True)
  --temperature_increment_on_fallback TEMPERATURE_INCREMENT_ON_FALLBACK
                        temperature to increase when falling back when the decoding fails to meet either of the thresholds below (default: 0.2)
  --compression_ratio_threshold COMPRESSION_RATIO_THRESHOLD
                        if the gzip compression ratio is higher than this value, treat the decoding as failed (default: 2.4)
  --logprob_threshold LOGPROB_THRESHOLD
                        if the average log probability is lower than this value, treat the decoding as failed (default: -1.0)
  --no_speech_threshold NO_SPEECH_THRESHOLD
                        if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence (default: 0.6)
  --word_timestamps WORD_TIMESTAMPS
                        (experimental) extract word-level timestamps and refine the results based on them (default: False)
  --prepend_punctuations PREPEND_PUNCTUATIONS
                        if word_timestamps is True, merge these punctuation symbols with the next word (default: "'“¿([{-)
  --append_punctuations APPEND_PUNCTUATIONS
                        if word_timestamps is True, merge these punctuation symbols with the previous word (default: "'.。,,!!??::”)]}、)
  --highlight_words HIGHLIGHT_WORDS
                        (requires --word_timestamps True) underline each word as it is spoken in srt and vtt (default: False)
  --max_line_width MAX_LINE_WIDTH
                        (requires --word_timestamps True) the maximum number of characters in a line before breaking the line (default: None)
  --max_line_count MAX_LINE_COUNT
                        (requires --word_timestamps True) the maximum number of lines in a segment (default: None)
  --max_words_per_line MAX_WORDS_PER_LINE
                        (requires --word_timestamps True, no effect with --max_line_width) the maximum number of words in a segment (default: None)
  --threads THREADS     number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS (default: 0)

C:\Users\wb491>cd C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB

C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>dir
 驱动器 C 中的卷是 WIN10
 卷的序列号是 9273-D6A8

 C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB 的目录

2024/01/31  00:02    <DIR>          .
2024/01/31  00:02    <DIR>          ..
2024/01/30  22:50           111,189 04.srt
2024/01/30  22:50           113,309 05.srt
2024/01/30  22:51           107,750 06.srt
2024/01/30  22:51           101,014 07.srt
2024/01/30  22:51           111,620 08.srt
2024/01/30  19:28           124,714 161426695262720.7z
2024/01/30  21:12           447,089 2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB 2.7z
2024/01/30  22:45           287,154 4[内置字幕]字幕1+台湾.ssa
2024/01/30  22:46           281,620 5[内置字幕]字幕1+台湾.ssa
2024/01/30  22:46           276,722 6[内置字幕]字幕1 (1)+台湾.ssa
2024/01/30  22:47           255,284 7[内置字幕]字幕1 (2)+台湾.ssa
2024/01/30  22:48           293,888 8[内置字幕]字幕1 (3)+台湾.ssa
2024/01/30  18:43                31 RARBG.txt
2024/01/30  18:43     1,082,562,938 Utopia.AU.S01E04.Onwards.and.Upwards.1080p.WEB-DL.AAC2.0.H.264-ABH.mkv
2024/01/30  18:43     1,068,829,082 Utopia.AU.S01E05.Arts.and.Minds.1080p.WEB-DL.AAC2.0.H.264-ABH.mkv
2024/01/30  18:43     1,065,442,786 Utopia.AU.S01E06.Then.We.Can.Build.It.1080p.WEB-DL.AAC2.0.H.264-ABH.mkv
2024/01/30  18:43     1,041,821,540 Utopia.AU.S01E07.The.First.Project.1080p.WEB-DL.AAC2.0.H.264-ABH.mkv
2024/01/30  18:43     1,065,084,003 Utopia.AU.S01E08.The.Whole.Enchilada.1080p.WEB-DL.AAC2.0.H.264-ABH.mkv
              18 个文件  5,326,251,733 字节
               2 个目录 260,072,566,784 可用字节

C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>whisper Utopia.AU.S01E04.Onwards.and.Upwards.1080p.WEB-DL.AAC2.0.H.264-ABH.mkv --model small --language Chinese
100%|███████████████████████████████████████| 461M/461M [00:41<00:00, 11.5MiB/s]
c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\transcribe.py:115: UserWarning: FP16 is not supported on CPU; using FP32 instead
  warnings.warn("FP16 is not supported on CPU; using FP32 instead")
Traceback (most recent call last):
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\runpy.py", line 192, in _run_module_as_main
    return _run_code(code, main_globals, None,
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\runpy.py", line 85, in _run_code
    exec(code, run_globals)
  File "C:\Users\wb491\AppData\Local\Programs\Python\Python38\Scripts\whisper.exe\__main__.py", line 7, in <module>
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\transcribe.py", line 478, in cli
    result = transcribe(model, audio_path, temperature=temperature, **args)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\transcribe.py", line 240, in transcribe
    result: DecodingResult = decode_with_fallback(mel_segment)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\transcribe.py", line 170, in decode_with_fallback
    decode_result = model.decode(segment, options)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\torch\autograd\grad_mode.py", line 27, in decorate_context
    return func(*args, **kwargs)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\decoding.py", line 824, in decode
    result = DecodingTask(model, options).run(mel)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\torch\autograd\grad_mode.py", line 27, in decorate_context
    return func(*args, **kwargs)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\decoding.py", line 737, in run
    tokens, sum_logprobs, no_speech_probs = self._main_loop(audio_features, tokens)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\decoding.py", line 687, in _main_loop
    logits = self.inference.logits(tokens, audio_features)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\decoding.py", line 163, in logits
    return self.model.decoder(tokens, audio_features, kv_cache=self.kv_cache)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\torch\nn\modules\module.py", line 889, in _call_impl
    result = self.forward(*input, **kwargs)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\model.py", line 211, in forward
    x = block(x, xa, mask=self.mask, kv_cache=kv_cache)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\torch\nn\modules\module.py", line 889, in _call_impl
    result = self.forward(*input, **kwargs)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\model.py", line 138, in forward
    x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)[0]
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\torch\nn\modules\module.py", line 889, in _call_impl
    result = self.forward(*input, **kwargs)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\model.py", line 90, in forward
    wv, qk = self.qkv_attention(q, k, v, mask)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\model.py", line 108, in qkv_attention
    return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach()
KeyboardInterrupt

C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>nvcc --versuib
nvcc fatal   : Unknown option '--versuib'

C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2023 NVIDIA Corporation
Built on Tue_Jun_13_19:42:34_Pacific_Daylight_Time_2023
Cuda compilation tools, release 12.2, V12.2.91
Build cuda_12.2.r12.2/compiler.32965470_0

C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu121
Looking in indexes: https://download.pytorch.org/whl/nightly/cu121
Requirement already satisfied: torch in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (1.8.1)
Collecting torchvision
  Downloading https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240130%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
     ---------------------------------------- 5.8/5.8 MB 10.3 MB/s eta 0:00:00
Collecting torchaudio
  Downloading https://download.pytorch.org/whl/nightly/cu121/torchaudio-2.2.0.dev20240130%2Bcu121-cp38-cp38-win_amd64.whl (4.1 MB)
     ---------------------------------------- 4.1/4.1 MB 43.2 MB/s eta 0:00:00
Requirement already satisfied: typing-extensions in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from torch) (4.9.0)
Requirement already satisfied: numpy in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from torch) (1.24.4)
Requirement already satisfied: requests in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from torchvision) (2.31.0)
Collecting torch
  Downloading https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240130%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
     ---------------------------------------- 2.4/2.4 GB 2.9 MB/s eta 0:00:00
Collecting pillow!=8.3.*,>=5.3.0 (from torchvision)
  Downloading https://download.pytorch.org/whl/nightly/Pillow-9.3.0-cp38-cp38-win_amd64.whl (2.5 MB)
     ---------------------------------------- 2.5/2.5 MB 437.3 kB/s eta 0:00:00
Collecting filelock (from torch)
  Downloading https://download.pytorch.org/whl/nightly/filelock-3.9.0-py3-none-any.whl (9.7 kB)
Collecting sympy (from torch)
  Downloading https://download.pytorch.org/whl/nightly/sympy-1.11.1-py3-none-any.whl (6.5 MB)
     ---------------------------------------- 6.5/6.5 MB 51.7 MB/s eta 0:00:00
Collecting networkx (from torch)
  Downloading https://download.pytorch.org/whl/nightly/networkx-3.0rc1-py3-none-any.whl (2.0 MB)
     ---------------------------------------- 2.0/2.0 MB 43.7 MB/s eta 0:00:00
Collecting jinja2 (from torch)
  Downloading https://download.pytorch.org/whl/nightly/Jinja2-3.1.2-py3-none-any.whl (133 kB)
     ---------------------------------------- 133.1/133.1 kB 8.2 MB/s eta 0:00:00
Collecting fsspec (from torch)
  Downloading https://download.pytorch.org/whl/nightly/fsspec-2023.4.0-py3-none-any.whl (153 kB)
     ---------------------------------------- 154.0/154.0 kB ? eta 0:00:00
INFO: pip is looking at multiple versions of torch to determine which version is compatible with other requirements. This could take a while.
Collecting torchvision
  Downloading https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240129%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
     ---------------------------------------- 5.8/5.8 MB 4.3 MB/s eta 0:00:00
Collecting torch
  Downloading https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240129%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
     ---------------------------------------- 2.4/2.4 GB 2.7 MB/s eta 0:00:00
Collecting torchvision
  Downloading https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240128%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
     ---------------------------------------- 5.8/5.8 MB 531.9 kB/s eta 0:00:00
Collecting torch
  Downloading https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240128%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
     ---------------------------------------- 2.4/2.4 GB 2.8 MB/s eta 0:00:00
Collecting torchvision
  Downloading https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240127%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
     ---------------------------------------- 5.8/5.8 MB 4.2 MB/s eta 0:00:00
Collecting torch
  Downloading https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240127%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
     --------- ------------------------------ 0.6/2.4 GB 459.1 kB/s eta 1:06:27
ERROR: Exception:
Traceback (most recent call last):
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\urllib3\response.py", line 438, in _error_catcher
    yield
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\urllib3\response.py", line 561, in read
    data = self._fp_read(amt) if not fp_closed else b""
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\urllib3\response.py", line 527, in _fp_read
    return self._fp.read(amt) if amt is not None else self._fp.read()
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\cachecontrol\filewrapper.py", line 98, in read
    data: bytes = self.__fp.read(amt)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\http\client.py", line 454, in read
    n = self.readinto(b)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\http\client.py", line 498, in readinto
    n = self.fp.readinto(b)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\socket.py", line 669, in readinto
    return self._sock.recv_into(b)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\ssl.py", line 1241, in recv_into
    return self.read(nbytes, buffer)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\ssl.py", line 1099, in read
    return self._sslobj.read(len, buffer)
socket.timeout: The read operation timed out

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\cli\base_command.py", line 180, in exc_logging_wrapper
    status = run_func(*args)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\cli\req_command.py", line 245, in wrapper
    return func(self, options, args)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\commands\install.py", line 377, in run
    requirement_set = resolver.resolve(
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\resolver.py", line 95, in resolve
    result = self._result = resolver.resolve(
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 546, in resolve
    state = resolution.resolve(requirements, max_rounds=max_rounds)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 427, in resolve
    failure_causes = self._attempt_to_pin_criterion(name)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 239, in _attempt_to_pin_criterion
    criteria = self._get_updated_criteria(candidate)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 230, in _get_updated_criteria
    self._add_to_criteria(criteria, requirement, parent=candidate)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 173, in _add_to_criteria
    if not criterion.candidates:
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\resolvelib\structs.py", line 156, in __bool__
    return bool(self._sequence)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\found_candidates.py", line 155, in __bool__
    return any(self)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\found_candidates.py", line 143, in <genexpr>
    return (c for c in iterator if id(c) not in self._incompatible_ids)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\found_candidates.py", line 47, in _iter_built
    candidate = func()
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\factory.py", line 182, in _make_candidate_from_link
    base: Optional[BaseCandidate] = self._make_base_candidate_from_link(
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\factory.py", line 228, in _make_base_candidate_from_link
    self._link_candidate_cache[link] = LinkCandidate(
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\candidates.py", line 293, in __init__
    super().__init__(
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\candidates.py", line 156, in __init__
    self.dist = self._prepare()
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\candidates.py", line 225, in _prepare
    dist = self._prepare_distribution()
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\candidates.py", line 304, in _prepare_distribution
    return preparer.prepare_linked_requirement(self._ireq, parallel_builds=True)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\operations\prepare.py", line 525, in prepare_linked_requirement
    return self._prepare_linked_requirement(req, parallel_builds)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\operations\prepare.py", line 596, in _prepare_linked_requirement
    local_file = unpack_url(
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\operations\prepare.py", line 168, in unpack_url
    file = get_http_url(
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\operations\prepare.py", line 109, in get_http_url
    from_path, content_type = download(link, temp_dir.path)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\network\download.py", line 147, in __call__
    for chunk in chunks:
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\cli\progress_bars.py", line 53, in _rich_progress_bar
    for chunk in iterable:
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\network\utils.py", line 63, in response_chunks
    for chunk in response.raw.stream(
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\urllib3\response.py", line 622, in stream
    data = self.read(amt=amt, decode_content=decode_content)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\urllib3\response.py", line 587, in read
    raise IncompleteRead(self._fp_bytes_read, self.length_remaining)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\contextlib.py", line 131, in __exit__
    self.gen.throw(type, value, traceback)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\urllib3\response.py", line 443, in _error_catcher
    raise ReadTimeoutError(self._pool, None, "Read timed out.")
pip._vendor.urllib3.exceptions.ReadTimeoutError: HTTPSConnectionPool(host='download.pytorch.org', port=443): Read timed out.

C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu121
Looking in indexes: https://download.pytorch.org/whl/nightly/cu121
Requirement already satisfied: torch in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (1.8.1)
Collecting torchvision
  Using cached https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240130%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
Collecting torchaudio
  Using cached https://download.pytorch.org/whl/nightly/cu121/torchaudio-2.2.0.dev20240130%2Bcu121-cp38-cp38-win_amd64.whl (4.1 MB)
Requirement already satisfied: typing-extensions in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from torch) (4.9.0)
Requirement already satisfied: numpy in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from torch) (1.24.4)
Requirement already satisfied: requests in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from torchvision) (2.31.0)
Collecting torch
  Using cached https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240130%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
Collecting pillow!=8.3.*,>=5.3.0 (from torchvision)
  Using cached https://download.pytorch.org/whl/nightly/Pillow-9.3.0-cp38-cp38-win_amd64.whl (2.5 MB)
Collecting filelock (from torch)
  Using cached https://download.pytorch.org/whl/nightly/filelock-3.9.0-py3-none-any.whl (9.7 kB)
Collecting sympy (from torch)
  Using cached https://download.pytorch.org/whl/nightly/sympy-1.11.1-py3-none-any.whl (6.5 MB)
Collecting networkx (from torch)
  Using cached https://download.pytorch.org/whl/nightly/networkx-3.0rc1-py3-none-any.whl (2.0 MB)
Collecting jinja2 (from torch)
  Using cached https://download.pytorch.org/whl/nightly/Jinja2-3.1.2-py3-none-any.whl (133 kB)
Collecting fsspec (from torch)
  Using cached https://download.pytorch.org/whl/nightly/fsspec-2023.4.0-py3-none-any.whl (153 kB)
INFO: pip is looking at multiple versions of torch to determine which version is compatible with other requirements. This could take a while.
Collecting torchvision
  Using cached https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240129%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
Collecting torch
  Using cached https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240129%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
Collecting torchvision
  Using cached https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240128%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
Collecting torch
  Using cached https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240128%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
Collecting torchvision
  Using cached https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240127%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
Collecting torch
  Downloading https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240127%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
     ---------------- ----------------------- 1.0/2.4 GB 56.0 kB/s eta 6:55:44
ERROR: Exception:
Traceback (most recent call last):
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\urllib3\response.py", line 438, in _error_catcher
    yield
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\urllib3\response.py", line 561, in read
    data = self._fp_read(amt) if not fp_closed else b""
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\urllib3\response.py", line 527, in _fp_read
    return self._fp.read(amt) if amt is not None else self._fp.read()
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\cachecontrol\filewrapper.py", line 98, in read
    data: bytes = self.__fp.read(amt)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\http\client.py", line 454, in read
    n = self.readinto(b)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\http\client.py", line 498, in readinto
    n = self.fp.readinto(b)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\socket.py", line 669, in readinto
    return self._sock.recv_into(b)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\ssl.py", line 1241, in recv_into
    return self.read(nbytes, buffer)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\ssl.py", line 1099, in read
    return self._sslobj.read(len, buffer)
socket.timeout: The read operation timed out

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\cli\base_command.py", line 180, in exc_logging_wrapper
    status = run_func(*args)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\cli\req_command.py", line 245, in wrapper
    return func(self, options, args)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\commands\install.py", line 377, in run
    requirement_set = resolver.resolve(
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\resolver.py", line 95, in resolve
    result = self._result = resolver.resolve(
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 546, in resolve
    state = resolution.resolve(requirements, max_rounds=max_rounds)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 427, in resolve
    failure_causes = self._attempt_to_pin_criterion(name)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 239, in _attempt_to_pin_criterion
    criteria = self._get_updated_criteria(candidate)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 230, in _get_updated_criteria
    self._add_to_criteria(criteria, requirement, parent=candidate)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 173, in _add_to_criteria
    if not criterion.candidates:
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\resolvelib\structs.py", line 156, in __bool__
    return bool(self._sequence)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\found_candidates.py", line 155, in __bool__
    return any(self)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\found_candidates.py", line 143, in <genexpr>
    return (c for c in iterator if id(c) not in self._incompatible_ids)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\found_candidates.py", line 47, in _iter_built
    candidate = func()
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\factory.py", line 182, in _make_candidate_from_link
    base: Optional[BaseCandidate] = self._make_base_candidate_from_link(
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\factory.py", line 228, in _make_base_candidate_from_link
    self._link_candidate_cache[link] = LinkCandidate(
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\candidates.py", line 293, in __init__
    super().__init__(
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\candidates.py", line 156, in __init__
    self.dist = self._prepare()
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\candidates.py", line 225, in _prepare
    dist = self._prepare_distribution()
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\candidates.py", line 304, in _prepare_distribution
    return preparer.prepare_linked_requirement(self._ireq, parallel_builds=True)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\operations\prepare.py", line 525, in prepare_linked_requirement
    return self._prepare_linked_requirement(req, parallel_builds)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\operations\prepare.py", line 596, in _prepare_linked_requirement
    local_file = unpack_url(
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\operations\prepare.py", line 168, in unpack_url
    file = get_http_url(
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\operations\prepare.py", line 109, in get_http_url
    from_path, content_type = download(link, temp_dir.path)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\network\download.py", line 147, in __call__
    for chunk in chunks:
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\cli\progress_bars.py", line 53, in _rich_progress_bar
    for chunk in iterable:
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\network\utils.py", line 63, in response_chunks
    for chunk in response.raw.stream(
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\urllib3\response.py", line 622, in stream
    data = self.read(amt=amt, decode_content=decode_content)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\urllib3\response.py", line 587, in read
    raise IncompleteRead(self._fp_bytes_read, self.length_remaining)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\contextlib.py", line 131, in __exit__
    self.gen.throw(type, value, traceback)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\urllib3\response.py", line 443, in _error_catcher
    raise ReadTimeoutError(self._pool, None, "Read timed out.")
pip._vendor.urllib3.exceptions.ReadTimeoutError: HTTPSConnectionPool(host='download.pytorch.org', port=443): Read timed out.

C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu121
Looking in indexes: https://download.pytorch.org/whl/nightly/cu121
Requirement already satisfied: torch in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (1.8.1)
Collecting torchvision
  Using cached https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240130%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
Collecting torchaudio
  Using cached https://download.pytorch.org/whl/nightly/cu121/torchaudio-2.2.0.dev20240130%2Bcu121-cp38-cp38-win_amd64.whl (4.1 MB)
Requirement already satisfied: typing-extensions in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from torch) (4.9.0)
Requirement already satisfied: numpy in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from torch) (1.24.4)
Requirement already satisfied: requests in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from torchvision) (2.31.0)
Collecting torch
  Using cached https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240130%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
Collecting pillow!=8.3.*,>=5.3.0 (from torchvision)
  Using cached https://download.pytorch.org/whl/nightly/Pillow-9.3.0-cp38-cp38-win_amd64.whl (2.5 MB)
Collecting filelock (from torch)
  Using cached https://download.pytorch.org/whl/nightly/filelock-3.9.0-py3-none-any.whl (9.7 kB)
Collecting sympy (from torch)
  Using cached https://download.pytorch.org/whl/nightly/sympy-1.11.1-py3-none-any.whl (6.5 MB)
Collecting networkx (from torch)
  Using cached https://download.pytorch.org/whl/nightly/networkx-3.0rc1-py3-none-any.whl (2.0 MB)
Collecting jinja2 (from torch)
  Using cached https://download.pytorch.org/whl/nightly/Jinja2-3.1.2-py3-none-any.whl (133 kB)
Collecting fsspec (from torch)
  Using cached https://download.pytorch.org/whl/nightly/fsspec-2023.4.0-py3-none-any.whl (153 kB)
INFO: pip is looking at multiple versions of torch to determine which version is compatible with other requirements. This could take a while.
Collecting torchvision
  Using cached https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240129%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
Collecting torch
  Using cached https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240129%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
Collecting torchvision
  Using cached https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240128%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
Collecting torch
  Using cached https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240128%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
Collecting torchvision
  Using cached https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240127%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
Collecting torch
  Downloading https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240127%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
     ---------------------------------------- 2.4/2.4 GB 2.4 MB/s eta 0:00:00
Collecting torchvision
  Downloading https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240126%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
     ---------------------------------------- 5.8/5.8 MB 4.2 MB/s eta 0:00:00
Collecting torch
  Downloading https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240126%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
     ---------------------------------------- 2.4/2.4 GB 2.5 MB/s eta 0:00:00
Collecting torchvision
  Downloading https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240125%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
     ---------------------------------------- 5.8/5.8 MB 4.3 MB/s eta 0:00:00
Collecting torch
  Downloading https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240125%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
     ---------------------------------------- 2.4/2.4 GB 3.0 MB/s eta 0:00:00
Collecting torchvision
  Downloading https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240124%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
     ---------------------------------------- 5.8/5.8 MB 1.1 MB/s eta 0:00:00
Collecting torch
  Downloading https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240124%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
     ---------------------------------------- 2.4/2.4 GB 2.9 MB/s eta 0:00:00
Collecting torchvision
  Downloading https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240123%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
     ---------------------------------------- 5.8/5.8 MB 4.3 MB/s eta 0:00:00
Collecting torch
  Downloading https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240122%2Bcu121-cp38-cp38-win_amd64.whl (2465.0 MB)
     ---------------------------------------- 2.5/2.5 GB 2.7 MB/s eta 0:00:00
INFO: pip is looking at multiple versions of torchaudio to determine which version is compatible with other requirements. This could take a while.
Collecting torchaudio
  Downloading https://download.pytorch.org/whl/nightly/cu121/torchaudio-2.2.0.dev20240129%2Bcu121-cp38-cp38-win_amd64.whl (4.1 MB)
     ---------------------------------------- 4.1/4.1 MB 3.2 MB/s eta 0:00:00
  Downloading https://download.pytorch.org/whl/nightly/cu121/torchaudio-2.2.0.dev20240128%2Bcu121-cp38-cp38-win_amd64.whl (4.1 MB)
     ---------------------------------------- 4.1/4.1 MB 647.8 kB/s eta 0:00:00
  Downloading https://download.pytorch.org/whl/nightly/cu121/torchaudio-2.2.0.dev20240127%2Bcu121-cp38-cp38-win_amd64.whl (4.1 MB)
     ---------------------------------------- 4.1/4.1 MB 1.4 MB/s eta 0:00:00
  Downloading https://download.pytorch.org/whl/nightly/cu121/torchaudio-2.2.0.dev20240126%2Bcu121-cp38-cp38-win_amd64.whl (4.1 MB)
     ---------------------------------------- 4.1/4.1 MB 3.1 MB/s eta 0:00:00
  Downloading https://download.pytorch.org/whl/nightly/cu121/torchaudio-2.2.0.dev20240125%2Bcu121-cp38-cp38-win_amd64.whl (4.1 MB)
     ---------------------------------------- 4.1/4.1 MB 3.2 MB/s eta 0:00:00
  Downloading https://download.pytorch.org/whl/nightly/cu121/torchaudio-2.2.0.dev20240124%2Bcu121-cp38-cp38-win_amd64.whl (4.1 MB)
     ---------------------------------------- 4.1/4.1 MB 3.3 MB/s eta 0:00:00
  Downloading https://download.pytorch.org/whl/nightly/cu121/torchaudio-2.2.0.dev20240123%2Bcu121-cp38-cp38-win_amd64.whl (4.1 MB)
     ---------------------------------------- 4.1/4.1 MB 3.0 MB/s eta 0:00:00
Collecting MarkupSafe>=2.0 (from jinja2->torch)
  Downloading https://download.pytorch.org/whl/nightly/MarkupSafe-2.1.3-cp38-cp38-win_amd64.whl (17 kB)
Requirement already satisfied: charset-normalizer<4,>=2 in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from requests->torchvision) (3.3.2)
Requirement already satisfied: idna<4,>=2.5 in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from requests->torchvision) (3.6)
Requirement already satisfied: urllib3<3,>=1.21.1 in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from requests->torchvision) (2.2.0)
Requirement already satisfied: certifi>=2017.4.17 in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from requests->torchvision) (2023.11.17)
Collecting mpmath>=0.19 (from sympy->torch)
  Downloading https://download.pytorch.org/whl/nightly/mpmath-1.2.1-py3-none-any.whl (532 kB)
     ---------------------------------------- 532.6/532.6 kB 8.4 MB/s eta 0:00:00
Installing collected packages: mpmath, sympy, pillow, networkx, MarkupSafe, fsspec, filelock, jinja2, torch, torchvision, torchaudio
  Attempting uninstall: torch
    Found existing installation: torch 1.8.1
    Uninstalling torch-1.8.1:
      Successfully uninstalled torch-1.8.1
Successfully installed MarkupSafe-2.1.3 filelock-3.9.0 fsspec-2023.4.0 jinja2-3.1.2 mpmath-1.2.1 networkx-3.0rc1 pillow-9.3.0 sympy-1.11.1 torch-2.3.0.dev20240122+cu121 torchaudio-2.2.0.dev20240123+cu121 torchvision-0.18.0.dev20240123+cu121

C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>python
Python 3.8.0 (tags/v3.8.0:fa919fd, Oct 14 2019, 19:37:50) [MSC v.1916 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> import torch
>>> print(torch.__version__)
2.3.0.dev20240122+cu121
>>> print(torch.cuda.is_available())
True
>>>
>>> exit()

C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2023 NVIDIA Corporation
Built on Tue_Jun_13_19:42:34_Pacific_Daylight_Time_2023
Cuda compilation tools, release 12.2, V12.2.91
Build cuda_12.2.r12.2/compiler.32965470_0

C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>whisper Utopia.AU.S01E04.Onwards.and.Upwards.1080p.WEB-DL.AAC2.0.H.264-ABH.mkv --model small --language Chinese
[00:30.000 --> 00:31.000] Katey
[00:32.000 --> 00:33.000] 我找不到咖啡
[00:33.000 --> 00:34.000] 我們找到了
[00:34.000 --> 00:35.000] 為什麼
[00:35.000 --> 00:36.000] 健康的選擇
[00:36.000 --> 00:37.000] 只有一個月而已
[00:37.000 --> 00:38.000] 我們在做工作
[00:38.000 --> 00:41.000] 免費咖啡、糖、醬汁
[00:41.000 --> 00:43.000] 那是四個基本食物群嗎
[00:44.000 --> 00:45.000] 不
[00:46.000 --> 00:47.000] 我會喝一杯
[00:47.000 --> 00:48.000] 有CAMMANMile和Ginger
[00:49.000 --> 00:50.000] 那是誰
[00:50.000 --> 00:51.000] Toni
[00:51.000 --> 00:52.000] 那是Lauren
[00:52.000 --> 00:53.000] 她是一名記者
[00:53.000 --> 00:54.000] 我們在調查
[00:54.000 --> 00:55.000] 不,是一名記者
[00:55.000 --> 00:56.000] 是一名記者
[00:56.000 --> 00:57.000] 是一名記者
[00:57.000 --> 00:58.000] 她是一名記者
[00:58.000 --> 00:59.000] 我們在調查
[00:59.000 --> 01:00.000] 不,是一名記者
[01:00.000 --> 01:01.000] 25年代澳洲人
[01:01.000 --> 01:02.000] 誰在調查我們的未來
[01:02.000 --> 01:03.000] 她在調查我們的未來
[01:03.000 --> 01:04.000] 她在調查我們的未來
[01:04.000 --> 01:05.000] 他答應了
[01:05.000 --> 01:06.000] Ronda在他的旁邊
[01:06.000 --> 01:07.000] 要停止
[01:07.000 --> 01:08.000] 小政治的立場
[01:08.000 --> 01:09.000] 要不然
[01:09.000 --> 01:10.000] 要不然
[01:10.000 --> 01:11.000] 對
[01:11.000 --> 01:12.000] 對不起,我還不確定
[01:12.000 --> 01:13.000] 那是甚麼
[01:13.000 --> 01:14.000] 是Rose Hep
[01:14.000 --> 01:15.000] 是嗎
[01:15.000 --> 01:16.000] 是
[01:16.000 --> 01:17.000] 那些小小的
[01:17.000 --> 01:18.000] 所以
[01:18.000 --> 01:20.000] 這些項目都已經完成了
[01:20.000 --> 01:21.000] 已經完成了
[01:21.000 --> 01:22.000] 還沒結束
[01:22.000 --> 01:23.000] 沒有,他們…
[01:23.000 --> 01:25.000] 他們在各種程度
[01:25.000 --> 01:26.000] 他們是一種技術
[01:26.000 --> 01:27.000] 技術技術
[01:27.000 --> 01:28.000] 還有一種長 term vision
[01:28.000 --> 01:29.000] 對
[01:29.000 --> 01:30.000] 步步步步步步步步
[01:30.000 --> 01:31.000] 很棒,很棒
[01:31.000 --> 01:32.000] 謝謝
[01:32.000 --> 01:33.000] 對不起,我…
[01:33.000 --> 01:34.000] 對不起
[01:34.000 --> 01:35.000] 我看你很熱心
[01:35.000 --> 01:36.000] 我們在討論長 term vision
[01:36.000 --> 01:38.000] 我希望我們可以給你一點點
[01:40.000 --> 01:41.000] Katy
[01:41.000 --> 01:42.000] 你用了甚麼手機
[01:42.000 --> 01:43.000] 我用了
[01:43.000 --> 01:44.000] 為甚麼
[01:44.000 --> 01:45.000] 健康的選擇
[01:45.000 --> 01:46.000] 但所有的食物都在
[01:46.000 --> 01:47.000] 對
[01:47.000 --> 01:48.000] 那是甚麼選擇
[01:48.000 --> 01:49.000] 你可以用雞肉
[01:49.000 --> 01:50.000] 或雞肉
[01:50.000 --> 01:52.000] 這是甚麼選擇
[01:52.000 --> 01:53.000] 這裡
[01:53.000 --> 01:54.000] 你好,Jim
[01:54.000 --> 01:55.000] 你現在在做甚麼
[01:55.000 --> 01:56.000] 我正在做巧克力
[01:56.000 --> 01:57.000] 你現在在做甚麼
[01:57.000 --> 01:58.000] 做甚麼
[01:58.000 --> 02:00.000] 我正在做NHP
[02:00.000 --> 02:01.000] NHP
[02:01.000 --> 02:03.000] National Highways Program
[02:03.000 --> 02:04.000] Connecting Australia
[02:04.000 --> 02:05.000] 27 Billion Dollar
[02:05.000 --> 02:06.000] Kate Zabrano
[02:06.000 --> 02:07.000] 在發展
[02:07.000 --> 02:08.000] 對
[02:08.000 --> 02:09.000] 對
[02:09.000 --> 02:10.000] 對
[02:10.000 --> 02:11.000] 對
[02:11.000 --> 02:12.000] 我可能會把那一個
[02:12.000 --> 02:14.000] 放在背後
[02:14.000 --> 02:15.000] 你對Clerk Priority
[02:15.000 --> 02:16.000] 第一
[02:16.000 --> 02:17.000] 對,國際戰鬥
[02:17.000 --> 02:18.000] 我們可能要把
[02:18.000 --> 02:19.000] 一半的氣勢
[02:19.000 --> 02:20.000] 滑倒了
[02:20.000 --> 02:21.000] 我只是半小時
[02:21.000 --> 02:22.000] 告訴你一件事
[02:22.000 --> 02:24.000] 我們在討論長 term project
[02:24.000 --> 02:25.000] 那聲音很棒
[02:25.000 --> 02:26.000] 我意思是
[02:26.000 --> 02:27.000] 你不要放在自己身上
[02:27.000 --> 02:28.000] 我不是放在自己身上
[02:28.000 --> 02:29.000] 我是放在你身上
[02:31.000 --> 02:32.000] 他不願意喝咖啡
[02:32.000 --> 02:34.000] 不願意
[02:35.000 --> 02:37.000] 那些大男人在討論你
[02:37.000 --> 02:38.000] 那些大男人
[02:38.000 --> 02:39.000] 他曾經在樓下工作
[02:39.000 --> 02:40.000] 但他移動了
[02:40.000 --> 02:41.000] 在這裡
[02:41.000 --> 02:42.000] 他在哪裡
[02:42.000 --> 02:43.000] 在那邊
[02:43.000 --> 02:44.000] 旁邊
[02:44.000 --> 02:45.000] 是否安全
[02:45.000 --> 02:46.000] 當然
[02:49.000 --> 02:50.000] 沒有人在
[02:50.000 --> 02:51.000] 他在附近
[02:51.000 --> 02:52.000] 那為什麼我們在說
[02:52.000 --> 02:53.000] 我不知道
[02:54.000 --> 02:55.000] 他在問我們
[02:55.000 --> 02:56.000] 他在問我們
[02:56.000 --> 02:57.000] 他的表演表演
[02:57.000 --> 02:58.000] 什麼
[02:58.000 --> 02:59.000] 我不知道
[02:59.000 --> 03:00.000] 他在前面
[03:00.000 --> 03:01.000] 他在前面
[03:01.000 --> 03:02.000] 所以希望你能做到
[03:02.000 --> 03:03.000] 他在這裡
[03:03.000 --> 03:04.000] 我怎麼應該
[03:04.000 --> 03:05.000] 在表演表演
[03:05.000 --> 03:06.000] 在我前面
[03:06.000 --> 03:07.000] 我認為我們必須
[03:07.000 --> 03:08.000] 為什麼
[03:08.000 --> 03:09.000] 這是一件事
[03:09.000 --> 03:10.000] 你的表演
[03:10.000 --> 03:11.000] 好
[03:11.000 --> 03:12.000] 你給我一個 Summary
[03:12.000 --> 03:13.000] 我看他做什麼
[03:13.000 --> 03:14.000] 我不知道
[03:14.000 --> 03:15.000] 你找到嗎
[03:15.000 --> 03:16.000] 我問他
[03:16.000 --> 03:17.000] 你不要問他
[03:17.000 --> 03:18.000] 為什麼我們在說
[03:18.000 --> 03:19.000] 他在討論
[03:19.000 --> 03:20.000] 他會在討論
[03:20.000 --> 03:21.000] 當然
[03:21.000 --> 03:22.000] 你怎麼會這樣
[03:22.000 --> 03:23.000] 你喜歡他
Traceback (most recent call last):
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\runpy.py", line 192, in _run_module_as_main
    return _run_code(code, main_globals, None,
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\runpy.py", line 85, in _run_code
    exec(code, run_globals)
  File "C:\Users\wb491\AppData\Local\Programs\Python\Python38\Scripts\whisper.exe\__main__.py", line 7, in <module>
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\transcribe.py", line 478, in cli
    result = transcribe(model, audio_path, temperature=temperature, **args)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\transcribe.py", line 240, in transcribe
    result: DecodingResult = decode_with_fallback(mel_segment)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\transcribe.py", line 170, in decode_with_fallback
    decode_result = model.decode(segment, options)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\decoding.py", line 824, in decode
    result = DecodingTask(model, options).run(mel)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\decoding.py", line 737, in run
    tokens, sum_logprobs, no_speech_probs = self._main_loop(audio_features, tokens)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\decoding.py", line 687, in _main_loop
    logits = self.inference.logits(tokens, audio_features)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\decoding.py", line 163, in logits
    return self.model.decoder(tokens, audio_features, kv_cache=self.kv_cache)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\torch\nn\modules\module.py", line 1511, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\torch\nn\modules\module.py", line 1520, in _call_impl
    return forward_call(*args, **kwargs)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\model.py", line 211, in forward
    x = block(x, xa, mask=self.mask, kv_cache=kv_cache)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\torch\nn\modules\module.py", line 1511, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\torch\nn\modules\module.py", line 1520, in _call_impl
    return forward_call(*args, **kwargs)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\model.py", line 136, in forward
    x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache)[0]
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\torch\nn\modules\module.py", line 1511, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\torch\nn\modules\module.py", line 1520, in _call_impl
    return forward_call(*args, **kwargs)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\model.py", line 90, in forward
    wv, qk = self.qkv_attention(q, k, v, mask)
  File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\model.py", line 108, in qkv_attention
    return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach()
KeyboardInterrupt

C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/249099.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024年数学建模美赛 分析与编程

2024年数学建模美赛 分析与编程 1、本专栏将在2024年美赛题目公布后&#xff0c;进行深入分析&#xff0c;建议收藏&#xff1b; 2、本专栏对2023年赛题&#xff0c;其它题目分析详见专题讨论&#xff1b; 2023年数学建模美赛A题&#xff08;A drought stricken plant communi…

k8s Sidecar filebeat 收集容器中的trace日志和app日志

目录 一、背景 二、设计 三、具体实现 Filebeat配置 K8S SideCar yaml Logstash配置 一、背景 将容器中服务的trace日志和应用日志收集到KAFKA&#xff0c;需要注意的是 trace 日志和app 日志需要存放在同一个KAFKA两个不同的topic中。分别为APP_TOPIC和TRACE_TOPIC 二、…

【笔记】React-Native跟Android交互--简单示例

/** * 使用命令 npx react-nativelatest init DemoRN创建项目 * * "react": "18.2.0", * "react-native": "0.73.2" * * 官网有详细教程&#xff1a;https://reactnative.dev/docs/native-modules-android */ 一、RN invoke androi…

Java 的 Map 與 List

通過重新new 一個ArrayList 轉化 resTask.setList(new ArrayList<Group>(custMap.values())); 无序的Map List 有序的数据放到Map&#xff0c;就变成无序。 List排序 按照code 的字母进行排序A-Z resTask.getListData().sort(Comparator.comparing(Gmer::getCode));…

Hadoop3.x基础(2)- HDFS

来源&#xff1a;B站尚硅谷 目录 HDFS概述HDFS产出背景及定义HDFS优缺点HDFS组成架构HDFS文件块大小&#xff08;面试重点&#xff09; HDFS的Shell操作&#xff08;开发重点&#xff09;基本语法命令大全常用命令实操准备工作上传下载HDFS直接操作 HDFS的API操作HDFS的API案例…

Vue.js 学习14 集成H265web.js播放器实现webpack自动化构建

Vue.js 学习14 集成H265web.js播放器实现webpack自动化构建 一、项目说明1. H265web.js 简介2. 准备环境 二、项目配置1. 下载 H265web.js2. 在vue项目里引入 H265web3. 设置 vue.config.js 三、代码引用1. 参照官方demo &#xff0c; 创建 executor.js2. 在 vue 页面里引用htm…

Wireshark网络协议分析 - Wireshark速览

在我的博客阅读本文 文章目录 1. 版本与平台2. 快速上手2.1. 选择网络接口进行捕获&#xff08;Capture&#xff09;2.2. 以Ping命令为例进行抓包分析2.3. 设置合适的过滤表达式2.4. 数据包详情2.5. TCP/IP 四层模型 3. 参考资料 1. 版本与平台 Wireshark是一个开源的网络数据…

Linux——安装MySQL

1、安装mysql8.0.35 1.1、安装步骤 1.更新包列表&#xff0c;首先&#xff0c;确保您的系统已更新到最新状态。运行以下命令来更新包列表和安装最新的软件包&#xff1a; sudo apt update sudo apt upgrade2.安装MySQL服务器&#xff1a;运行以下命令来安装MySQL服务器&…

【制作100个unity游戏之23】实现类似七日杀、森林一样的生存游戏5(附项目源码)

本节最终效果演示 文章目录 本节最终效果演示系列目录前言修改鼠标光标和中心提示图鼠标光标素材修改默认鼠标光标修改中心提示图 拾取提示弹窗简单绘制UI拾取弹窗功能 源码完结 系列目录 前言 欢迎来到【制作100个Unity游戏】系列&#xff01;本系列将引导您一步步学习如何使…

ASTORS国土安全奖:ManageEngine AD360荣获银奖

美国安全今日&#xff08;AST&#xff09;的年度“ASTORS”国土安全奖计划是一个备受瞩目的活动&#xff0c;致力于突显国土安全领域的创新与进步。这一奖项旨在表彰在保护国家免受安全威胁方面做出卓越贡献的个人和组织。该计划汇聚了执法、公共安全和行业领袖&#xff0c;不仅…

能耗在线监测系统在节能管理中的应用

上海安科瑞电气股份有限公司 胡冠楠 咨询家&#xff1a;“Acrelhgn”&#xff0c;了解更多产品资讯 摘要&#xff1a;开展能耗在线监测系统建设&#xff0c;对加强政府部门和企业节能管理中的应用前景&#xff0c;分析系统在能源消费预测分析、能效对标、节能监察、能源精细化…

单片机驱动多个ds18b20

目录 1设计内容 2ds18b20介绍 2.1传感器引脚及原理图 2.2寄存器配置 3程序实现 3.1配置初始化 3.2配置寄存器 3.3ROM读取 3.4温度读取 1设计内容 通过51单片机&#xff0c;读取总线上挂载的多个ds18b20的温度信息。 如下图&#xff0c;成功读取到3路温度数据。 2ds18…

路由备份聚合排错

目录 实验拓扑图 实验要求 实验排错 故障一 故障现象 故障分析 故障解决 故障二 故障现象 故障分析 故障解决 故障三 故障现象 故障分析 故障解决 故障四 故障现象 故障分析 故障解决 故障五 故障现象 故障分析 故障解决 实验拓扑图 实验要求 按照图示配…

软件工程知识梳理4-详细设计

详细设计阶段的根本目标是确定应该怎样具体地实现所要求的系统&#xff0c;也就是说.经过这个阶段的设计工作.应该得出对目标系统的精确描述.从而在编码阶段可以把这个描述直接翻译成用某种程序设计语言书写的程序。 详细设计的的目标不仅仅是逻辑上正确地实现每个模块地功能&a…

使用最大边界相关算法处理文章自动摘要

一、需求背景 对于博客或者文章来说&#xff0c;摘要是普遍性的需求。但是我们不可能让作者自己手动填写摘要或者直接暴力截取文章的部分段落作为摘要&#xff0c;这样既不符合逻辑又不具有代表性&#xff0c;那么&#xff0c;是否有相关的算法或者数学理论能够完成这个需求呢&…

【UE 材质】球形遮罩材质

效果 步骤 1. 新建一个材质&#xff0c;这里命名为“M_Mask” 打开“M_Mask”&#xff0c;混合模式设置为已遮罩&#xff0c;勾选双面显示 在材质图表中添加如下节点 此时我们将一个物体赋予材质“M_Mask”并放置在世界坐标原点&#xff0c;可以看到如下效果 2. 如果我们希望能…

UE4学习笔记 FPS游戏制作1 制作第一人称控制器

文章目录 章节目标前置概念Rotator与Vector&#xff1a;roll与yaw与pitch 添加按键输入蓝图结构区域1区域2区域3区域4 章节目标 本章节将实现FPS基础移动 前置概念 Rotator与Vector&#xff1a; Vector是用向量表示方向&#xff0c;UE中玩家的正前方是本地坐标系的(1,0,0)&…

MySQL备份和恢复(二)mysqldump

注意&#xff1a;mysqldump是完全备份 一、mysqldump备份命令 1、 备份数据库 含创建库语句 &#xff08;1&#xff09;备份指定数据库 完全备份一个或多个完整的库&#xff0c; mysqldump -uroot -p[密码] --databases 库名1 [库名2].. >/备份路径/备份文件名.sql#导出…

华为笔记本matebook pro X如何扩容 C 盘空间

一、前提条件 磁盘扩展与合并必须是相邻分区空间&#xff0c;且两个磁盘类型需要相同。以磁盘分区为 C 盘和 D 盘为例&#xff0c;如果您希望增加 C 盘容量&#xff0c;可以先将 D 盘合并到 C 盘&#xff0c;然后重新创建磁盘分区&#xff0c;分配 C 盘和 D 盘的空间大小。 访…

ADI 配合 USRP 使用的相控阵天线 cn0566

相控阵天线 在这里插入图片描述