go语言socket编程

1.互联网分层模型

过程分析:

2.Socket图解

Socket是应用层与TCP/IP协议族通信的中间软件抽象层。在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏在Socket后面,对用户来说只需要调用Socket规定的相关函数,让Socket去组织符合指定的协议数据然后进行通信。 

  • Socket又称“套接字”,应用程序通常通过“套接字”向网络发出请求或者应答网络请求
  • 常用的Socket类型有两种:流式Socket和数据报式Socket,流式是一种面向连接的Socket,针对于面向连接的TCP服务应用,数据报式Socket是一种无连接的Socket,针对于无连接的UDP服务应用
  • TCP:面向连接,比较慢,但比较靠谱
  • UDP:比较快,但不是太靠谱

3.TCP编程

3.1 TCP服务端

因为Go语言中创建多个goroutine实现并发非常方便和高效,所以我们可以每建立一次链接就创建一个goroutine去处理。

TCP服务端程序的处理流程:

    1.监听端口2.接收客户端请求建立链接3.创建goroutine处理链接。

我们使用Go语言的net包实现的TCP服务端代码如下:

// tcp/server/main.go// TCP server端// 处理函数
func process(conn net.Conn) {defer conn.Close() // 关闭连接for {reader := bufio.NewReader(conn)var buf [128]byten, err := reader.Read(buf[:]) // 读取数据if err != nil {fmt.Println("read from client failed, err:", err)break}recvStr := string(buf[:n])fmt.Println("收到client端发来的数据:", recvStr)conn.Write([]byte(recvStr)) // 发送数据}
}func main() {listen, err := net.Listen("tcp", "127.0.0.1:20000")if err != nil {fmt.Println("listen failed, err:", err)return}for {conn, err := listen.Accept() // 建立连接if err != nil {fmt.Println("accept failed, err:", err)continue}go process(conn) // 启动一个goroutine处理连接}
}

将上面的代码保存之后编译成server或server.exe可执行文件。

3.2 TCP客户端

一个TCP客户端进行TCP通信的流程如下:

    1.建立与服务端的链接2.进行数据收发3.关闭链接

使用Go语言的net包实现的TCP客户端代码如下:

// tcp/client/main.go// 客户端
func main() {conn, err := net.Dial("tcp", "127.0.0.1:20000")if err != nil {fmt.Println("err :", err)return}defer conn.Close() // 关闭连接inputReader := bufio.NewReader(os.Stdin)for {input, _ := inputReader.ReadString('\n') // 读取用户输入inputInfo := strings.Trim(input, "\r\n")if strings.ToUpper(inputInfo) == "Q" { // 如果输入q就退出return}_, err = conn.Write([]byte(inputInfo)) // 发送数据if err != nil {return}buf := [512]byte{}n, err := conn.Read(buf[:])if err != nil {fmt.Println("recv failed, err:", err)return}fmt.Println(string(buf[:n]))}
}

将上面的代码编译成client或client.exe可执行文件,先启动server端再启动client端,在client端输入任意内容回车之后就能够在server端看到client端发送的数据,从而实现TCP通信。

4.UDP编程

4.1 UDP服务端

使用Go语言的net包实现的UDP服务端代码如下:

// UDP/server/main.go// UDP server端
func main() {listen, err := net.ListenUDP("udp", &net.UDPAddr{IP:   net.IPv4(0, 0, 0, 0),Port: 30000,})if err != nil {fmt.Println("listen failed, err:", err)return}defer listen.Close()for {var data [1024]byten, addr, err := listen.ReadFromUDP(data[:]) // 接收数据if err != nil {fmt.Println("read udp failed, err:", err)continue}fmt.Printf("data:%v addr:%v count:%v\n", string(data[:n]), addr, n)_, err = listen.WriteToUDP(data[:n], addr) // 发送数据if err != nil {fmt.Println("write to udp failed, err:", err)continue}}
}

4.2 UDP客户端

使用Go语言的net包实现的UDP客户端代码如下:

// UDP 客户端
func main() {socket, err := net.DialUDP("udp", nil, &net.UDPAddr{IP:   net.IPv4(0, 0, 0, 0),Port: 30000,})if err != nil {fmt.Println("连接服务端失败,err:", err)return}defer socket.Close()sendData := []byte("Hello server")_, err = socket.Write(sendData) // 发送数据if err != nil {fmt.Println("发送数据失败,err:", err)return}data := make([]byte, 4096)n, remoteAddr, err := socket.ReadFromUDP(data) // 接收数据if err != nil {fmt.Println("接收数据失败,err:", err)return}fmt.Printf("recv:%v addr:%v count:%v\n", string(data[:n]), remoteAddr, n)
}

5 TCP黏包

服务端代码如下:

// socket_stick/server/main.gofunc process(conn net.Conn) {defer conn.Close()reader := bufio.NewReader(conn)var buf [1024]bytefor {n, err := reader.Read(buf[:])if err == io.EOF {break}if err != nil {fmt.Println("read from client failed, err:", err)break}recvStr := string(buf[:n])fmt.Println("收到client发来的数据:", recvStr)}
}func main() {listen, err := net.Listen("tcp", "127.0.0.1:30000")if err != nil {fmt.Println("listen failed, err:", err)return}defer listen.Close()for {conn, err := listen.Accept()if err != nil {fmt.Println("accept failed, err:", err)continue}go process(conn)}
}

客户端代码如下:

// socket_stick/client/main.gofunc main() {conn, err := net.Dial("tcp", "127.0.0.1:30000")if err != nil {fmt.Println("dial failed, err", err)return}defer conn.Close()for i := 0; i < 20; i++ {msg := `Hello, Hello. How are you?`conn.Write([]byte(msg))}
}

将上面的代码保存后,分别编译。先启动服务端再启动客户端,可以看到服务端输出结果如下:

收到client发来的数据: Hello, Hello. How are you?Hello, Hello. How are you?Hello, Hello. How are you?Hello, Hello. How are you?Hello, Hello. How are you?
收到client发来的数据: Hello, Hello. How are you?Hello, Hello. How are you?Hello, Hello. How are you?Hello, Hello. How are you?Hello, Hello. How are you?Hello, Hello. How are you?Hello, Hello. How are you?Hello, Hello. How are you?
收到client发来的数据: Hello, Hello. How are you?Hello, Hello. How are you?
收到client发来的数据: Hello, Hello. How are you?Hello, Hello. How are you?Hello, Hello. How are you?
收到client发来的数据: Hello, Hello. How are you?Hello, Hello. How are you?

客户端分10次发送的数据,在服务端并没有成功的输出10次,而是多条数据“粘”到了一起。

5.1. 为什么会出现粘包

主要原因就是tcp数据传递模式是流模式,在保持长连接的时候可以进行多次的收和发。

“粘包”可发生在发送端也可发生在接收端:

    1.由Nagle算法造成的发送端的粘包:Nagle算法是一种改善网络传输效率的算法。简单来说就是当我们提交一段数据给TCP发送时,TCP并不立刻发送此段数据,而是等待一小段时间看看在等待期间是否还有要发送的数据,若有则会一次把这两段数据发送出去。2.接收端接收不及时造成的接收端粘包:TCP会把接收到的数据存在自己的缓冲区中,然后通知应用层取数据。当应用层由于某些原因不能及时的把TCP的数据取出来,就会造成TCP缓冲区中存放了几段数据。

5.2. 解决办法

出现”粘包”的关键在于接收方不确定将要传输的数据包的大小,因此我们可以对数据包进行封包和拆包的操作。

封包:封包就是给一段数据加上包头,这样一来数据包就分为包头和包体两部分内容了(过滤非法包时封包会加入”包尾”内容)。包头部分的长度是固定的,并且它存储了包体的长度,根据包头长度固定以及包头中含有包体长度的变量就能正确的拆分出一个完整的数据包。

我们可以自己定义一个协议,比如数据包的前4个字节为包头,里面存储的是发送的数据的长度。

// socket_stick/proto/proto.go
package protoimport ("bufio""bytes""encoding/binary"
)// Encode 将消息编码
func Encode(message string) ([]byte, error) {// 读取消息的长度,转换成int32类型(占4个字节)var length = int32(len(message))var pkg = new(bytes.Buffer)// 写入消息头err := binary.Write(pkg, binary.LittleEndian, length)if err != nil {return nil, err}// 写入消息实体err = binary.Write(pkg, binary.LittleEndian, []byte(message))if err != nil {return nil, err}return pkg.Bytes(), nil
}// Decode 解码消息
func Decode(reader *bufio.Reader) (string, error) {// 读取消息的长度lengthByte, _ := reader.Peek(4) // 读取前4个字节的数据lengthBuff := bytes.NewBuffer(lengthByte)var length int32err := binary.Read(lengthBuff, binary.LittleEndian, &length)if err != nil {return "", err}// Buffered返回缓冲中现有的可读取的字节数。if int32(reader.Buffered()) < length+4 {return "", err}// 读取真正的消息数据pack := make([]byte, int(4+length))_, err = reader.Read(pack)if err != nil {return "", err}return string(pack[4:]), nil
}

接下来在服务端和客户端分别使用上面定义的proto包的Decode和Encode函数处理数据。

服务端代码如下:

// socket_stick/server2/main.gofunc process(conn net.Conn) {defer conn.Close()reader := bufio.NewReader(conn)for {msg, err := proto.Decode(reader)if err == io.EOF {return}if err != nil {fmt.Println("decode msg failed, err:", err)return}fmt.Println("收到client发来的数据:", msg)}
}func main() {listen, err := net.Listen("tcp", "127.0.0.1:30000")if err != nil {fmt.Println("listen failed, err:", err)return}defer listen.Close()for {conn, err := listen.Accept()if err != nil {fmt.Println("accept failed, err:", err)continue}go process(conn)}
}

客户端代码如下:

// socket_stick/client2/main.gofunc main() {conn, err := net.Dial("tcp", "127.0.0.1:30000")if err != nil {fmt.Println("dial failed, err", err)return}defer conn.Close()for i := 0; i < 20; i++ {msg := `Hello, Hello. How are you?`data, err := proto.Encode(msg)if err != nil {fmt.Println("encode msg failed, err:", err)return}conn.Write(data)}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/249351.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

助力水下潜行:浮力调节系统仿真

01.建设海洋强国 海洋蕴藏着丰富的资源&#xff0c;二十大报告强调&#xff0c;要“发展海洋经济&#xff0c;保护海洋生态环境&#xff0c;加快建设海洋强国”。建设海洋强国旨在通过科技创新驱动、合理开发利用海洋资源、强化海洋环境保护与生态修复、提升海洋经济质量等多个…

测试access和trunk口的区别(华为)

思科设备参考&#xff1a;测试access和trunk口的区别&#xff08;思科&#xff09; 一&#xff0c;实验目的 实现同一 Vlan 内的主机互通&#xff0c;不同 Vlan 间的主机隔离。 二&#xff0c;配置前测试 PC1分别ping PC2、PC3、PC4都能通&#xff0c;因为四台PC默认同处于v…

AOP+Redisson 延时队列,实现缓存延时双删策略

一、缓存延时双删 关于缓存和数据库中的数据保持一致有很多种方案&#xff0c;但不管是单独在修改数据库之前&#xff0c;还是之后去删除缓存都会有一定的风险导致数据不一致。而延迟双删是一种相对简单并且收益比较高的实现最终一致性的方式&#xff0c;即在删除缓存之后&…

强化学习原理python篇07——策略梯度法

强化学习原理python篇07——策略梯度法 Average state valueAverage rewardMonte Carlo policy gradient (REINFORCE)REINFORCE示例在torch里面编写这段代码1、用随机权重初始化策略网络2、运行N个完整的片段&#xff0c;保存其(s,a,r,s)状态转移3、对于每个片段k的每一步t&…

Web中的转发与重定向

转发与重定向 一、转发和重定向的概念1.转发2.重定向 二、JavaWeb 中的转发和重定向三、SpringMVC 中的转发和重定向1.转发(1) 默认的方式(2) 完整的方式 2.重定向 四、总结 一、转发和重定向的概念 在 Web 应用中&#xff0c;转发和重定向都是用于将请求从一个页面传递到另一…

故障诊断 | 一文解决,CNN卷积神经网络故障诊断(Matlab)

文章目录 效果一览文章概述专栏介绍源码设计参考资料效果一览 文章概述 故障诊断 | 一文解决,CNN卷积神经网络故障诊断(Matlab) 专栏介绍 订阅【故障诊断】专栏,不定期更新机器学习和深度学习在故障诊断中的应用;订阅

外星人入侵(python)

前言 代码来源《python编程从入门到实践》Eric Matthes 署 袁国忠 译 使用软件&#xff1a;PyCharm Community Editor 2022 目的&#xff1a;记录一下按照书上敲的代码 alien_invasion.py 游戏的一些初始化设置&#xff0c;调用已经封装好的函数方法&#xff0c;一个函数的…

【React】前端项目引入阿里图标

【React】前端项目引入阿里图标 方式11、登录自己的iconfont-阿里巴巴矢量图标库&#xff0c;把需要的图标加入到自己的项目中去&#xff1b;2、加入并进入到项目中去选择Font class 并下载到本地3、得到的文件夹如下4. 把红框中的部分粘贴到自己的项目中&#xff08;public 文…

【百度Apollo】本地调试仿真:加速自动驾驶系统开发的利器

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《linux深造日志》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! ⛳️ 推荐 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下…

更改MAC终端样式(美化、易用的提示等)

1. 前言 之前用 Ubuntu、Elementary OS 时觉得其终端既漂亮又好用&#xff0c;购买的云服务器的默认终端也好看&#xff0c;一些牛人的桌面终端也配置得挺好看。虽然 Mac 的默认终端配置已经比 Windows 好看好用很多了&#xff0c;但还是觉得不够。于是灵机一动&#xff0c;想…

springboot139华强北商城二手手机管理系统

简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的 适用于计算机类毕业设计&#xff0c;课程设计参考与学习用途。仅供学习参考&#xff0c; 不得用于商业或者非法用途&#xff0c;否则&#xff0c;一切后果请用户自负。 看运行截图看 第五章 第四章 获取资料方式 **项…

idea docker 内网应用实践

文章目录 前言一、服务器端1.1 离线安装docker1.2 开启docker远程访问1.3 制作对应jdk镜像1.3.1 下载jdk171.3.2 Dockerfile 制作jdk17镜像1.3.3 镜像导出1.3.4 服务器引入镜像 二、Idea 配置2.1 Dockerfile2.2 pom 引入docker插件2.3 idea docker插件配置2.4 打包镜像上传2.5 …

第17次修改了可删除可持久保存的前端html备忘录:增加年月日星期,增加倒计时,更改保存区名称可以多个备忘录保存不一样的信息,匹配背景主题:现代深色

第17次修改了可删除可持久保存的前端html备忘录&#xff1a;增加年月日星期&#xff0c;增加倒计时&#xff0c;更改保存区名称可以多个备忘录保存不一样的信息&#xff0c;匹配背景主题&#xff1a;现代深色 备忘录代码&#xff1a; <!DOCTYPE html> <html lang&quo…

前端常见的栈溢出报错

什么是栈溢出&#xff1f; 在前端开发中&#xff0c;栈溢出是指JavaScript引擎执行代码时&#xff0c;调用栈&#xff08;call stack&#xff09;变得太大&#xff0c;超过了浏览器或JavaScript引擎所分配的栈空间&#xff0c;从而导致栈溢出错误。调用栈是一种数据结构&#x…

【Spark系列2】Spark编程模型RDD

RDD概述 RDD最初的概述来源于一片论文-伯克利实验室的Resilient Distributed Datasets&#xff1a;A Fault-Tolerant Abstraction for In-Memory Cluster Computing。这篇论文奠定了RDD基本功能的思想 RDD实际为Resilient Distribution Datasets的简称&#xff0c;意为弹性分…

git clone常见问题一览及解决方法

在使用Ubuntu下&#xff0c;终端运行git clone命令时会遇见许多问题&#xff0c;本文主要针对一些常见的问题进行整理。关于换源问题&#xff0c;推荐使用小鱼的一键换源。 1.git clone 速度过慢 1.1 魔法 这个方法不做过多赘述&#xff0c;ubuntu下个人使用发现体验良好&am…

matlab中的图窗属性和坐标轴的属性

图窗的Position和Outerposition Position 指定窗口的尺寸和窗口在屏幕中的位置。 Outerposition 指定窗口外轮廓的大小和位置。 两者都是用一个4维向量来定义&#xff0c;格式为[左 底 宽 高]。 可通过set函数修改Position和Outerposition&#xff0c;如下&#xff1a;在屏幕左…

【2024全网最详细】Google 搜索命令终极指南

&#x1f482; 个人网站:【 海拥】【神级代码资源网站】【办公神器】&#x1f91f; 基于Web端打造的&#xff1a;&#x1f449;轻量化工具创作平台&#x1f485; 想寻找共同学习交流的小伙伴&#xff0c;请点击【全栈技术交流群】 你是否尝试过使用 Google 搜索作为免费的 SEO …

Flink 读取 Kafka 消息写入 Hudi 表无报错但没有写入任何记录的解决方法

博主历时三年精心创作的《大数据平台架构与原型实现:数据中台建设实战》一书现已由知名IT图书品牌电子工业出版社博文视点出版发行,点击《重磅推荐:建大数据平台太难了!给我发个工程原型吧!》了解图书详情,京东购书链接:https://item.jd.com/12677623.html,扫描左侧二维…

设计一个支持并发的前端缓存接口

文章目录 一、概述二、并发缓存2.1、问题2.2、思考2.3、优化 三、总结四、最后 一、概述 缓存池不过就是一个map&#xff0c;存储接口数据的地方&#xff0c;将接口的路径和参数拼到一块作为key&#xff0c;数据作为value存起来罢了&#xff0c;这个咱谁都会。 const cacheMa…