20240202在WIN10下使用whisper.cpp

20240202在WIN10下使用whisper.cpp
2024/2/2 14:15


【结论:在Windows10下,确认large模式识别7分钟中文视频,需要83.7284 seconds,需要大概1.5分钟!效率太差!】
83.7284/420=0.19935333333333333333333333333333

前提条件,可以通过技术手段上外网!^_
首先你要有一张NVIDIA的显卡,比如我用的PDD拼多多的二手GTX1080显卡。【并且极其可能是矿卡!】800¥
2、请正确安装好NVIDIA最新的545版本的驱动程序和CUDA、cuDNN。
2、安装Torch
3、配置whisper


识别得到的字幕chs.srt是繁体中文的,将来要想办法更换为简体中文的!
1
00:00:00,000 --> 00:00:01,400
前段時間有個巨石恆虎

2
00:00:01,400 --> 00:00:03,000
某某是男人最好的醫妹

3
00:00:03,000 --> 00:00:04,800
這裡的某某可以替換為減肥

4
00:00:04,800 --> 00:00:07,800
長髮 西裝 考研 速唱 永潔無間等等等等


https://github.com/Const-me/Whisper/releases
https://www.cnblogs.com/jike9527/p/17545484.html?share_token=5af4092d-5b67-4e52-8231-0ae220fd2185
https://www.cnblogs.com/jike9527/p/17545484.html
使用whisper批量生成字幕(whisper.cpp)

c:\>
c:\>git clone https://github.com/ggerganov/whisper.cpp
Cloning into 'whisper.cpp'...
remote: Enumerating objects: 6773, done.
remote: Counting objects: 100% (1995/1995), done.
remote: Compressing objects: 100% (275/275), done.
remote: Total 6773 (delta 1826), reused 1810 (delta 1714), pack-reused 4778
Receiving objects: 100% (6773/6773), 10.18 MiB | 6.55 MiB/s, done.
Resolving deltas: 100% (4368/4368), done.


c:\>cd whisper.cpp

c:\whisper.cpp>dir
 驱动器 C 中的卷是 WIN10
 卷的序列号是 9273-D6A8

 c:\whisper.cpp 的目录

2024/02/02  14:20    <DIR>          .
2024/02/02  14:20    <DIR>          ..
2024/02/02  14:20    <DIR>          .devops
2024/02/02  14:20    <DIR>          .github
2024/02/02  14:20               863 .gitignore
2024/02/02  14:20                99 .gitmodules
2024/02/02  14:20    <DIR>          bindings
2024/02/02  14:20    <DIR>          cmake
2024/02/02  14:20            19,729 CMakeLists.txt
2024/02/02  14:20    <DIR>          coreml
2024/02/02  14:20    <DIR>          examples
2024/02/02  14:20    <DIR>          extra
2024/02/02  14:20            32,539 ggml-alloc.c
2024/02/02  14:20             4,149 ggml-alloc.h
2024/02/02  14:20             5,996 ggml-backend-impl.h
2024/02/02  14:20            69,048 ggml-backend.c
2024/02/02  14:20            11,932 ggml-backend.h
2024/02/02  14:20           451,408 ggml-cuda.cu
2024/02/02  14:20             2,156 ggml-cuda.h
2024/02/02  14:20             7,813 ggml-impl.h
2024/02/02  14:20             2,425 ggml-metal.h
2024/02/02  14:20           152,813 ggml-metal.m
2024/02/02  14:20           231,753 ggml-metal.metal
2024/02/02  14:20            87,989 ggml-opencl.cpp
2024/02/02  14:20             1,422 ggml-opencl.h
2024/02/02  14:20           411,673 ggml-quants.c
2024/02/02  14:20            13,983 ggml-quants.h
2024/02/02  14:20           696,627 ggml.c
2024/02/02  14:20            87,399 ggml.h
2024/02/02  14:20    <DIR>          grammars
2024/02/02  14:20             1,093 LICENSE
2024/02/02  14:20            15,341 Makefile
2024/02/02  14:20    <DIR>          models
2024/02/02  14:20    <DIR>          openvino
2024/02/02  14:20             1,835 Package.swift
2024/02/02  14:20            39,942 README.md
2024/02/02  14:20    <DIR>          samples
2024/02/02  14:20    <DIR>          spm-headers
2024/02/02  14:20    <DIR>          tests
2024/02/02  14:20           239,648 whisper.cpp
2024/02/02  14:20            30,873 whisper.h
              26 个文件      2,620,548 字节
              15 个目录 128,119,971,840 可用字节

c:\whisper.cpp>
c:\whisper.cpp>
c:\whisper.cpp>
c:\whisper.cpp>cd models

c:\whisper.cpp\models>dir
 驱动器 C 中的卷是 WIN10
 卷的序列号是 9273-D6A8

 c:\whisper.cpp\models 的目录

2024/02/02  14:20    <DIR>          .
2024/02/02  14:20    <DIR>          ..
2024/02/02  14:20                 7 .gitignore
2024/02/02  14:20             4,980 convert-h5-to-coreml.py
2024/02/02  14:20             7,584 convert-h5-to-ggml.py
2024/02/02  14:20            10,955 convert-pt-to-ggml.py
2024/02/02  14:20            12,761 convert-whisper-to-coreml.py
2024/02/02  14:20             1,799 convert-whisper-to-openvino.py
2024/02/02  14:20             2,272 download-coreml-model.sh
2024/02/02  14:20             1,440 download-ggml-model.cmd
2024/02/02  14:20             3,039 download-ggml-model.sh
2024/02/02  14:20           575,451 for-tests-ggml-base.bin
2024/02/02  14:20           586,836 for-tests-ggml-base.en.bin
2024/02/02  14:20           575,451 for-tests-ggml-large.bin
2024/02/02  14:20           575,451 for-tests-ggml-medium.bin
2024/02/02  14:20           586,836 for-tests-ggml-medium.en.bin
2024/02/02  14:20           575,451 for-tests-ggml-small.bin
2024/02/02  14:20           586,836 for-tests-ggml-small.en.bin
2024/02/02  14:20           575,451 for-tests-ggml-tiny.bin
2024/02/02  14:20           586,836 for-tests-ggml-tiny.en.bin
2024/02/02  14:20             1,506 generate-coreml-interface.sh
2024/02/02  14:20             1,355 generate-coreml-model.sh
2024/02/02  14:20             3,711 ggml_to_pt.py
2024/02/02  14:20                42 openvino-conversion-requirements.txt
2024/02/02  14:20             5,615 README.md
              23 个文件      5,281,665 字节
               2 个目录 105,396,047,872 可用字节

c:\whisper.cpp\models>main.exe -f samples\jfk.wav
'main.exe' 不是内部或外部命令,也不是可运行的程序
或批处理文件。

c:\whisper.cpp\models>dir
 驱动器 C 中的卷是 WIN10
 卷的序列号是 9273-D6A8

 c:\whisper.cpp\models 的目录

2024/02/02  14:23    <DIR>          .
2024/02/02  14:23    <DIR>          ..
2024/02/02  14:20                 7 .gitignore
2024/02/02  14:20             4,980 convert-h5-to-coreml.py
2024/02/02  14:20             7,584 convert-h5-to-ggml.py
2024/02/02  14:20            10,955 convert-pt-to-ggml.py
2024/02/02  14:20            12,761 convert-whisper-to-coreml.py
2024/02/02  14:20             1,799 convert-whisper-to-openvino.py
2024/02/02  14:20             2,272 download-coreml-model.sh
2024/02/02  14:20             1,440 download-ggml-model.cmd
2024/02/02  14:20             3,039 download-ggml-model.sh
2024/02/02  14:20           575,451 for-tests-ggml-base.bin
2024/02/02  14:20           586,836 for-tests-ggml-base.en.bin
2024/02/02  14:20           575,451 for-tests-ggml-large.bin
2024/02/02  14:20           575,451 for-tests-ggml-medium.bin
2024/02/02  14:20           586,836 for-tests-ggml-medium.en.bin
2024/02/02  14:20           575,451 for-tests-ggml-small.bin
2024/02/02  14:20           586,836 for-tests-ggml-small.en.bin
2024/02/02  14:20           575,451 for-tests-ggml-tiny.bin
2024/02/02  14:20           586,836 for-tests-ggml-tiny.en.bin
2024/02/02  14:20             1,506 generate-coreml-interface.sh
2024/02/02  14:20             1,355 generate-coreml-model.sh
2024/02/02  13:23        37,922,638 ggml-base-encoder.mlmodelc.zip
2024/02/02  13:23        59,707,625 ggml-base-q5_1.bin
2024/02/02  13:24       147,951,465 ggml-base.bin
2024/02/02  13:24        37,950,917 ggml-base.en-encoder.mlmodelc.zip
2024/02/02  13:24        59,721,011 ggml-base.en-q5_1.bin
2024/02/02  13:24       147,964,211 ggml-base.en.bin
2024/02/02  13:30     1,177,529,527 ggml-large-v1-encoder.mlmodelc.zip
2024/02/02  13:35     3,094,623,691 ggml-large-v1.bin
2024/02/02  13:31     1,174,643,458 ggml-large-v2-encoder.mlmodelc.zip
2024/02/02  13:30     1,080,732,091 ggml-large-v2-q5_0.bin
2024/02/02  13:35     3,094,623,691 ggml-large-v2.bin
2024/02/02  13:31     1,175,711,232 ggml-large-v3-encoder.mlmodelc.zip
2024/02/02  13:32     1,081,140,203 ggml-large-v3-q5_0.bin
2024/02/02  13:35     3,095,033,483 ggml-large-v3.bin
2024/02/02  13:57       567,829,413 ggml-medium-encoder.mlmodelc.zip
2024/02/02  13:57       539,212,467 ggml-medium-q5_0.bin
2024/02/02  14:03     1,533,763,059 ggml-medium.bin
2024/02/02  13:59       566,993,085 ggml-medium.en-encoder.mlmodelc.zip
2024/02/02  13:59       539,225,533 ggml-medium.en-q5_0.bin
2024/02/02  14:04     1,533,774,781 ggml-medium.en.bin
2024/02/02  14:08       163,083,239 ggml-small-encoder.mlmodelc.zip
2024/02/02  14:07       190,085,487 ggml-small-q5_1.bin
2024/02/02  14:09       487,601,967 ggml-small.bin
2024/02/02  14:09       162,952,446 ggml-small.en-encoder.mlmodelc.zip
2024/02/02  14:09       190,098,681 ggml-small.en-q5_1.bin
2024/02/02  14:11       487,614,201 ggml-small.en.bin
2024/02/02  14:10        15,037,446 ggml-tiny-encoder.mlmodelc.zip
2024/02/02  14:10        32,152,673 ggml-tiny-q5_1.bin
2024/02/02  14:11        77,691,713 ggml-tiny.bin
2024/02/02  14:11        15,034,655 ggml-tiny.en-encoder.mlmodelc.zip
2024/02/02  14:11        32,166,155 ggml-tiny.en-q5_1.bin
2024/02/02  14:12        43,550,795 ggml-tiny.en-q8_0.bin
2024/02/02  14:12        77,704,715 ggml-tiny.en.bin
2024/02/02  14:20             3,711 ggml_to_pt.py
2024/02/02  13:23             1,477 gitattributes
2024/02/02  14:20                42 openvino-conversion-requirements.txt
2024/02/02  13:23             1,311 README.md
              57 个文件 22,726,106,592 字节
               2 个目录 105,396,191,232 可用字节

c:\whisper.cpp\models>cd ..

c:\whisper.cpp>dir

c:\whisper.cpp>
c:\whisper.cpp>
c:\whisper.cpp>main.exe -f samples\jfk.wav
Using GPU "NVIDIA GeForce GTX 1080", feature level 12.1, effective flags Wave32 | NoReshapedMatMul
Loaded MEL filters, 62.8 kb RAM
Loaded vocabulary, 51864 strings, 3050.6 kb RAM
Loaded 245 GPU tensors, 140.539 MB VRAM
Computed CPU base frequency: 2.29469 GHz
Loaded model from "models/ggml-base.en.bin" to VRAM
Created source reader from the file "samples\jfk.wav"

[00:00:00.000 --> 00:00:11.000]   And so my fellow Americans, ask not what your country can do for you, ask what you can do for your country.
    CPU Tasks
LoadModel       577.635 milliseconds
RunComplete     422.9 milliseconds
Run     319.505 milliseconds
Callbacks       5.4751 milliseconds, 2 calls, 2.73755 milliseconds average
Spectrogram     52.7935 milliseconds, 3 calls, 17.5978 milliseconds average
Sample  7.6473 milliseconds, 27 calls, 283.233 microseconds average
Encode  188.011 milliseconds
Decode  125.975 milliseconds
DecodeStep      118.306 milliseconds, 27 calls, 4.38169 milliseconds average
    GPU Tasks
LoadModel       249.459 milliseconds
Run     231.117 milliseconds
Encode  99.0044 milliseconds
EncodeLayer     77.7554 milliseconds, 6 calls, 12.9592 milliseconds average
Decode  132.112 milliseconds
DecodeStep      132.103 milliseconds, 27 calls, 4.89271 milliseconds average
DecodeLayer     87.4824 milliseconds, 162 calls, 540.015 microseconds average
    Compute Shaders
mulMatTiled     63.4898 milliseconds, 60 calls, 1.05816 milliseconds average
mulMatByRowTiled        50.9198 milliseconds, 1959 calls, 25.9928 microseconds average
softMaxLong     27.5314 milliseconds, 27 calls, 1.01968 milliseconds average
norm    12.3785 milliseconds, 526 calls, 23.5333 microseconds average
addRepeatGelu   11.9749 milliseconds, 170 calls, 70.4406 microseconds average
fmaRepeat1      7.652 milliseconds, 526 calls, 14.5475 microseconds average
addRepeatEx     7.4319 milliseconds, 498 calls, 14.9235 microseconds average
softMaxFixed    6.913 milliseconds, 168 calls, 41.1488 microseconds average
copyConvert     5.397 milliseconds, 348 calls, 15.5086 microseconds average
convolutionMain 5.3903 milliseconds
convolutionMain2Fixed   5.2572 milliseconds
copyTranspose   4.6246 milliseconds, 336 calls, 13.7637 microseconds average
scaleInPlace    4.5107 milliseconds, 168 calls, 26.8494 microseconds average
addRepeatScale  3.7607 milliseconds, 324 calls, 11.6071 microseconds average
softMax 2.9733 milliseconds, 162 calls, 18.3537 microseconds average
addRepeat       1.8574 milliseconds, 180 calls, 10.3189 microseconds average
diagMaskInf     1.3711 milliseconds, 162 calls, 8.46358 microseconds average
convolutionPrep1        439.3 microseconds, 2 calls, 219.65 microseconds average
convolutionPrep2        229.4 microseconds, 2 calls, 114.7 microseconds average
addRows 191.5 microseconds, 27 calls, 7.09259 microseconds average
add     60.4 microseconds
mulMatByScalar  29.7 microseconds, 6 calls, 4.95 microseconds average
mulMatByRow     27.6 microseconds, 6 calls, 4.6 microseconds average
    Memory Usage
Model   858.5 KB RAM, 140.539 MB VRAM
Context 1.19063 MB RAM, 186.732 MB VRAM
Total   2.02901 MB RAM, 327.271 MB VRAM

c:\whisper.cpp>main.exe -l zh -osrt -m models/ggml-medium.bin chs.wav
Using GPU "NVIDIA GeForce GTX 1080", feature level 12.1, effective flags Wave32 | NoReshapedMatMul
Loaded MEL filters, 62.8 kb RAM
Loaded vocabulary, 51865 strings, 3037.1 kb RAM
Loaded 947 GPU tensors, 1462.12 MB VRAM
Computed CPU base frequency: 2.29469 GHz
Loaded model from "models/ggml-medium.bin" to VRAM
Created source reader from the file "chs.wav"

[00:00:00.000 --> 00:00:01.400]  ?????????????
[00:00:01.400 --> 00:00:03.000]  ????????????
[00:00:03.000 --> 00:00:04.800]  ?????????????????
[00:00:04.800 --> 00:00:07.800]  ??? ?? ??? ?? ?????????
[00:00:07.800 --> 00:00:09.200]  ???????????
[00:00:09.200 --> 00:00:12.000]  ??????????????????????
[00:00:12.000 --> 00:00:13.400]  ?????????
[00:00:13.400 --> 00:00:14.400]  ???????
[00:00:14.400 --> 00:00:17.400]  ?????????????????????????
[00:00:17.400 --> 00:00:20.000]  ?????????????????????
[00:00:20.000 --> 00:00:21.600]  ???????????????
[00:00:21.600 --> 00:00:22.800]  ?????????
[00:00:22.800 --> 00:00:24.400]  ?????????????
[00:00:24.400 --> 00:00:29.600]  ?????????????????? ?????????????????????
[00:00:29.600 --> 00:00:32.400]  ??????? ???????? ???
[00:00:32.400 --> 00:00:34.600]  ??????????????????
[00:00:34.600 --> 00:00:36.200]  ???????????
[00:00:36.200 --> 00:00:37.000]  ???
[00:00:37.000 --> 00:00:38.000]  ?????
[00:00:38.000 --> 00:00:39.400]  ???????????
[00:00:39.400 --> 00:00:40.600]  ????????
[00:00:40.600 --> 00:00:41.800]  ????? ?????
[00:00:41.800 --> 00:00:44.000]  ???????????????????
[00:00:44.000 --> 00:00:46.600]  ?????????????????????????
[00:00:46.600 --> 00:00:49.600]  ???????????????????????
[00:00:49.600 --> 00:00:52.000]  ???????????????????
[00:00:52.000 --> 00:00:54.200]  ???????????????????
[00:00:54.200 --> 00:00:56.000]  ??????? ??????
[00:00:56.000 --> 00:00:58.000]  ???????????????????
[00:00:58.000 --> 00:01:00.000]  ??????????????
[00:01:00.000 --> 00:01:01.000]  ????????
[00:01:01.000 --> 00:01:02.600]  ???????????
[00:01:02.600 --> 00:01:04.800]  ????????????? ????????
[00:01:04.800 --> 00:01:07.000]  ??11 ??????????????????
[00:01:07.000 --> 00:01:10.000]  ?????????????????? ????????
[00:01:10.000 --> 00:01:13.200]  ???? ??????????????????296%
[00:01:13.200 --> 00:01:16.000]  ?????????????????????
[00:01:16.000 --> 00:01:20.000]  ??????11 ?????? ????????????7????????
[00:01:20.000 --> 00:01:21.000]  ?????????
[00:01:21.000 --> 00:01:22.400]  ???????????
[00:01:22.400 --> 00:01:24.200]  ???? ????????
[00:01:24.200 --> 00:01:26.800]  ???????????????????????
[00:01:26.800 --> 00:01:28.400]  ???? ?????????
[00:01:28.400 --> 00:01:29.800]  ??????????
[00:01:29.800 --> 00:01:31.800]  ?????????????? ????
[00:01:31.800 --> 00:01:33.400]  ??????????????
[00:01:33.400 --> 00:01:35.400]  ???????????????
[00:01:35.400 --> 00:01:37.600]  ??? ?????2198
[00:01:37.600 --> 00:01:40.600]  ????????? ??????699
[00:01:40.600 --> 00:01:42.200]  ?????? ???????
[00:01:42.200 --> 00:01:45.000]  400?????? ?????????300?
[00:01:45.000 --> 00:01:48.200]  ??????? ????????200???????????
[00:01:48.200 --> 00:01:51.600]  ????? ????????????Citywalk????
[00:01:51.600 --> 00:01:54.600]  ?????? ???????1000????
[00:01:54.600 --> 00:01:58.200]  ????????????????????????????
[00:01:58.200 --> 00:02:00.400]  ?????????????????
[00:02:00.400 --> 00:02:02.200]  ?????????????
[00:02:02.200 --> 00:02:05.000]  ???????????????????????
[00:02:05.000 --> 00:02:07.400]  ????????? ???????????
[00:02:07.400 --> 00:02:08.600]  ????????
[00:02:08.600 --> 00:02:10.000]  ??????????
[00:02:10.000 --> 00:02:13.400]  ???????????????????????? ????1?1???
[00:02:13.400 --> 00:02:15.800]  ??????????????? ?????
[00:02:15.800 --> 00:02:18.200]  ?????????? ?????????
[00:02:18.200 --> 00:02:20.600]  ???????????? ???????
[00:02:20.600 --> 00:02:22.400]  ?????????? ???
[00:02:22.400 --> 00:02:26.400]  ????????? ????? ???? ??????????
[00:02:26.400 --> 00:02:29.200]  ???????? ???????????????????
[00:02:29.200 --> 00:02:30.800]  ????????????
[00:02:30.800 --> 00:02:32.600]  ???? ???????
[00:02:32.600 --> 00:02:35.400]  ????????? ????????
[00:02:35.400 --> 00:02:38.600]  ????????????? ???????????
[00:02:38.600 --> 00:02:41.000]  ?????? ???????????
[00:02:41.000 --> 00:02:43.600]  ?????????1000? ???????
[00:02:43.600 --> 00:02:46.400]  500???????? 200???????
[00:02:46.400 --> 00:02:48.400]  ?99 ??????????
[00:02:48.400 --> 00:02:50.800]  ???????????? ?????????
[00:02:50.800 --> 00:02:53.800]  ???????GORTEX??????? ??3000??
[00:02:53.800 --> 00:02:56.200]  ???????????????????????
[00:02:56.200 --> 00:03:00.000]  ???????????GORTEX???????????4500
[00:03:00.000 --> 00:03:03.000]  ?????GORTEX ?????????????
[00:03:03.000 --> 00:03:05.800]  ????? ???????????????????
[00:03:05.800 --> 00:03:08.000]  ???????? ????? ????
[00:03:08.000 --> 00:03:09.800]  ?????????????????
[00:03:09.800 --> 00:03:11.800]  ????????????????????
[00:03:11.800 --> 00:03:14.200]  ???????? ????????????
[00:03:14.200 --> 00:03:17.000]  ???????????? ????????
[00:03:17.000 --> 00:03:20.000]  ??????????? ??????????
[00:03:20.000 --> 00:03:21.600]  ????????????
[00:03:21.600 --> 00:03:23.200]  ?????????????
[00:03:23.200 --> 00:03:26.000]  ????????????????? ?????????????
[00:03:26.000 --> 00:03:29.000]  ??????????? ????????? ?????????
[00:03:29.000 --> 00:03:31.800]  ?????????? ??????????????
[00:03:31.800 --> 00:03:35.000]  ??????? ????????????????????
[00:03:35.000 --> 00:03:36.800]  ????????????
[00:03:36.800 --> 00:03:40.000]  ???? ???????????? ???
[00:03:40.000 --> 00:03:42.600]  ?????????? ???????????
[00:03:42.600 --> 00:03:46.000]  ?????????? ????????????
[00:03:46.000 --> 00:03:49.200]  ??????????????? ?????????????
[00:03:49.200 --> 00:03:52.200]  ?????????? ??????????
[00:03:52.200 --> 00:03:55.000]  ???????????????? ?????
[00:03:55.000 --> 00:03:58.000]  ???????????? ?????????????
[00:03:58.000 --> 00:04:01.000]  ?????????????????????? ?????
[00:04:01.000 --> 00:04:04.000]  ??????????????? ??????
[00:04:04.000 --> 00:04:06.600]  ??????? ???????????????
[00:04:06.600 --> 00:04:08.800]  ???????????????
[00:04:08.800 --> 00:04:12.000]  ?????????????????? ?????????
[00:04:12.000 --> 00:04:13.600]  ??????????????
[00:04:13.600 --> 00:04:16.200]  ??????????? ??????????
[00:04:16.200 --> 00:04:18.400]  ???????? ???????
[00:04:18.400 --> 00:04:21.800]  ?? ?????? ??????????????
[00:04:21.800 --> 00:04:25.800]  ??????????????? ??????????????????
[00:04:25.800 --> 00:04:29.200]  ???????? ????????????????????
[00:04:29.200 --> 00:04:30.800]  ?????????????????
[00:04:30.800 --> 00:04:33.400]  ?????????? ?????????
[00:04:33.400 --> 00:04:36.200]  ??????? ????????????????
[00:04:36.200 --> 00:04:39.400]  ???????? ???????????????
[00:04:39.400 --> 00:04:41.200]  ??????????????
[00:04:41.200 --> 00:04:43.600]  ?????????? ?????????
[00:04:43.600 --> 00:04:45.000]  ??????????
[00:04:45.000 --> 00:04:47.600]  ????????????????????
[00:04:47.600 --> 00:04:51.600]  ????????????? ????????? ???????
[00:04:51.600 --> 00:04:53.200]  ???????????
[00:04:53.200 --> 00:04:55.800]  ??? ??????????????????????
[00:04:55.800 --> 00:04:57.400]  ????????????????
[00:04:57.400 --> 00:04:59.800]  ?????????????????????
[00:04:59.800 --> 00:05:03.000]  ?????????????? ???????????
[00:05:03.000 --> 00:05:04.800]  ?????????????????
[00:05:04.800 --> 00:05:07.200]  ???????????? ??????????
[00:05:07.200 --> 00:05:09.400]  ???? ??????????????
[00:05:09.400 --> 00:05:11.600]  ??????????????????
[00:05:11.600 --> 00:05:14.800]  ???????????????? ???????????
[00:05:14.800 --> 00:05:16.400]  ???? ??????
[00:05:16.400 --> 00:05:18.800]  ????? ??????????????
[00:05:18.800 --> 00:05:20.800]  ???????????????
[00:05:20.800 --> 00:05:23.200]  ????????? ????????????
[00:05:23.200 --> 00:05:25.600]  ????????? ??????????????
[00:05:25.600 --> 00:05:29.800]  ?????? ????????????????????881?
[00:05:29.800 --> 00:05:31.800]  ??????? ??2000?
[00:05:31.800 --> 00:05:34.600]  ?????? ??????????????????
[00:05:34.600 --> 00:05:38.400]  ?????????8000????????? 2000???????
[00:05:38.600 --> 00:05:41.200]  ????????? ????????????
[00:05:41.200 --> 00:05:43.600]  ?????? ??? ????????
[00:05:43.600 --> 00:05:46.600]  ??2000??8000????????????????
[00:05:46.600 --> 00:05:49.600]  ??????????? ?2018?2021?
[00:05:49.600 --> 00:05:52.200]  ?????4???????60%??
[00:05:52.200 --> 00:05:56.000]  ??5??? ?????????????20??????60??
[00:05:56.000 --> 00:05:59.200]  ?????????? ?????????????????
[00:05:59.200 --> 00:06:02.200]  ???????????? ?????????????????
[00:06:02.200 --> 00:06:05.200]  ?????????? ???????????????
[00:06:05.200 --> 00:06:09.600]  ??? ????????? ????????????????????
[00:06:09.600 --> 00:06:11.400]  ????????????
[00:06:11.400 --> 00:06:15.200]  ???? ?????????? ????????????????
[00:06:15.200 --> 00:06:17.800]  ???? ????????????????
[00:06:17.800 --> 00:06:20.600]  ?350?????????????????
[00:06:20.600 --> 00:06:23.000]  ??????? ??????????
[00:06:23.000 --> 00:06:25.000]  ?????????????????
[00:06:25.000 --> 00:06:27.400]  ??? ???????????OK
[00:06:27.400 --> 00:06:29.600]  ?????????????????????
[00:06:29.600 --> 00:06:31.800]  ???????????????????
[00:06:31.800 --> 00:06:36.600]  ???????????????? ???????????????????????
[00:06:36.600 --> 00:06:38.800]  ?????????????????
[00:06:38.800 --> 00:06:41.400]  ???????????????????
[00:06:41.400 --> 00:06:44.200]  ??????????????????????????
[00:06:44.200 --> 00:06:46.800]  ????????????????????
[00:06:46.800 --> 00:06:48.800]  ????????????????
[00:06:48.800 --> 00:06:51.200]  ???????????????????
[00:06:51.200 --> 00:06:53.000]  ????????????????
[00:06:53.000 --> 00:06:56.000]  ?????????????????????????
[00:06:56.000 --> 00:07:01.600]  ????????????IC????? ????? ??????
    CPU Tasks
LoadModel       1.43866 seconds
RunComplete     83.7284 seconds
Run     83.6255 seconds
Callbacks       457.784 milliseconds, 187 calls, 2.44804 milliseconds average
Spectrogram     1.21106 seconds, 90 calls, 13.4562 milliseconds average
Sample  1.01043 seconds, 3535 calls, 285.836 microseconds average
Encode  15.2296 seconds, 17 calls, 895.858 milliseconds average
Decode  67.9228 seconds, 17 calls, 3.99546 seconds average
DecodeStep      66.9103 seconds, 3535 calls, 18.928 milliseconds average
    GPU Tasks
LoadModel       1.03839 seconds
Run     83.4773 seconds
Encode  15.3219 seconds, 17 calls, 901.288 milliseconds average
EncodeLayer     13.0778 seconds, 408 calls, 32.0533 milliseconds average
Decode  68.1554 seconds, 17 calls, 4.00914 seconds average
DecodeStep      68.1535 seconds, 3535 calls, 19.2796 milliseconds average
DecodeLayer     61.7764 seconds, 84840 calls, 728.152 microseconds average
    Compute Shaders
mulMatByRowTiled        38.8209 seconds, 1016702 calls, 38.1831 microseconds average
mulMatTiled     15.8527 seconds, 8993 calls, 1.76278 milliseconds average
fmaRepeat1      3.71454 seconds, 258888 calls, 14.348 microseconds average
addRepeatEx     3.43395 seconds, 255336 calls, 13.4487 microseconds average
normFixed       3.29705 seconds, 258888 calls, 12.7354 microseconds average
softMaxLong     2.62421 seconds, 3535 calls, 742.351 microseconds average
copyConvert     2.6175 seconds, 171312 calls, 15.2791 microseconds average
addRepeatScale  2.43674 seconds, 169680 calls, 14.3608 microseconds average
copyTranspose   2.43484 seconds, 170496 calls, 14.2809 microseconds average
softMaxFixed    1.78188 seconds, 85248 calls, 20.9023 microseconds average
addRepeatGelu   1.39165 seconds, 85282 calls, 16.3182 microseconds average
softMax 1.27396 seconds, 84840 calls, 15.0161 microseconds average
scaleInPlace    1.00817 seconds, 85248 calls, 11.8264 microseconds average
addRepeat       954.089 milliseconds, 86064 calls, 11.0858 microseconds average
diagMaskInf     652.093 milliseconds, 84840 calls, 7.68616 microseconds average
convolutionMain2Fixed   388.382 milliseconds, 17 calls, 22.846 milliseconds average
convolutionMain 163.663 milliseconds, 17 calls, 9.62722 milliseconds average
convolutionPrep1        24.0373 milliseconds, 34 calls, 706.979 microseconds average
addRows 21.3709 milliseconds, 3535 calls, 6.04552 microseconds average
convolutionPrep2        7.0976 milliseconds, 34 calls, 208.753 microseconds average
add     1.8821 milliseconds, 17 calls, 110.712 microseconds average
    Memory Usage
Model   877.966 KB RAM, 1.42785 GB VRAM
Context 109.465 MB RAM, 785.219 MB VRAM
Total   110.322 MB RAM, 2.19467 GB VRAM

c:\whisper.cpp>


https://github.com/ggerganov/whisper.cpp/tree/master/models
https://github.com/ggerganov/whisper.cpp
ggerganov/whisper.cpp


https://blog.csdn.net/aiyolo/article/details/129674728?share_token=2c48b804-37f6-43a8-9159-08b28147ad67
Whisper.cpp 编译使用
whisper.cpp 是牛人 ggerganov 对 openai 的 whisper 语音识别模型用 C++ 重新实现的项目,开源在 github 上,具有轻量、性能高,实用性强等特点。这篇文章主要记录在 windows 平台,如何使用该模型在本地端进行语音识别。
whisper.cpp 的开源地址在 ggerganov/whisper.cpp: Port of OpenAI’s Whisper model in C/C++ (github.com),首先将项目下载在本地。
git clone https://github.com/ggerganov/whisper.cpp
whisper.cpp 项目里提供了几个现成的模型。建议下载 small 以上的模型,不然识别效果完全无法使用。


https://huggingface.co/ggerganov/whisper.cpp
ggerganov/whisper.cpp 
OpenAI's Whisper models converted to ggml format
Available models

Model    Disk    Mem    SHA
tiny    75 MB    ~390 MB    bd577a113a864445d4c299885e0cb97d4ba92b5f
tiny.en    75 MB    ~390 MB    c78c86eb1a8faa21b369bcd33207cc90d64ae9df
base    142 MB    ~500 MB    465707469ff3a37a2b9b8d8f89f2f99de7299dac
base.en    142 MB    ~500 MB    137c40403d78fd54d454da0f9bd998f78703390c
small    466 MB    ~1.0 GB    55356645c2b361a969dfd0ef2c5a50d530afd8d5
small.en    466 MB    ~1.0 GB    db8a495a91d927739e50b3fc1cc4c6b8f6c2d022
medium    1.5 GB    ~2.6 GB    fd9727b6e1217c2f614f9b698455c4ffd82463b4
medium.en    1.5 GB    ~2.6 GB    8c30f0e44ce9560643ebd10bbe50cd20eafd3723
large-v1    2.9 GB    ~4.7 GB    b1caaf735c4cc1429223d5a74f0f4d0b9b59a299
large-v2    2.9 GB    ~4.7 GB    0f4c8e34f21cf1a914c59d8b3ce882345ad349d6
large    2.9 GB    ~4.7 GB    ad82bf6a9043ceed055076d0fd39f5f186ff8062
note: large corresponds to the latest Large v3 model

For more information, visit:

https://github.com/ggerganov/whisper.cpp/tree/master/models
https://huggingface.co/ggerganov/whisper.cpp/tree/main

参考资料:
https://www.toutiao.com/article/7225218604160418338/?app=news_article&timestamp=1706803458&use_new_style=1&req_id=2024020200041726E9258609E554857D25&group_id=7225218604160418338&tt_from=mobile_qq&utm_source=mobile_qq&utm_medium=toutiao_android&utm_campaign=client_share&share_token=37e094d5-29b8-4d14-87bb-241cdc28b0ea&source=m_redirect
AI浪潮下的12大开源神器介绍
原创2023-04-23 20:33·IT小熊实验室丶


https://blog.csdn.net/sinat_18131557/article/details/130950719?share_token=25ca6bb5-8450-472c-9228-abc8c6ce74d8
whisper.cpp在Windows VS的编译
sinat_18131557 于 2023-05-30 16:03:53 发布


https://www.toutiao.com/article/7283079784329052726/?app=news_article&timestamp=1706803297&use_new_style=1&req_id=20240202000137411974769524167990E0&group_id=7283079784329052726&tt_from=mobile_qq&utm_source=mobile_qq&utm_medium=toutiao_android&utm_campaign=client_share&share_token=b7961b29-d87a-4b6c-bb8e-c7c213388390&source=m_redirect
【往期回顾】Github开源项目月刊精选-2023年8月
原创2023-09-27 08:30·Github推荐官


https://blog.csdn.net/weixin_45533131/article/details/132817683?share_token=72d8a161-4d49-4795-ad21-2ce5e2e4b197
在Linux(Centos7)上编译whisper.cpp的详细教程


https://blog.csdn.net/u012234115/article/details/134668510?share_token=e3835a0d-ac3b-4c86-9e32-e79ec85cddbe
开源C++智能语音识别库whisper.cpp开发使用入门


https://www.toutiao.com/article/7276732434920653312/?app=news_article&timestamp=1706802934&use_new_style=1&req_id=2024020123553463D3509B1706BC79D479&group_id=7276732434920653312&tt_from=mobile_qq&utm_source=mobile_qq&utm_medium=toutiao_android&utm_campaign=client_share&share_token=7bcb7488-a03d-4291-96fb-d0835ac76cca&source=m_redirect
OpenAI的whisper的c/c++ 版本体验
首先下载代码,注:我的OS环境是ubuntu 18.04。


https://post.smzdm.com/p/a3052kz7/?share_token=d4057cba-adb0-4c91-8a8b-d8a7adcf4087
显卡怎么玩 篇三:音频转字幕神器whisper升级版,whisper-webui使用教程


https://www.toutiao.com/article/7311876528407921162/?app=news_article&timestamp=1706801102&use_new_style=1&req_id=20240201232501647517150775FC7AD89A&group_id=7311876528407921162&tt_from=mobile_qq&utm_source=mobile_qq&utm_medium=toutiao_android&utm_campaign=client_share&share_token=dfa1976e-9422-49d2-a73b-6453becea90c&source=m_redirect
2023 AI 界7个最火的 Text-to-Video 模型


动画
https://www.toutiao.com/article/7312473532829745700/?app=news_article&timestamp=1706801052&use_new_style=1&req_id=2024020123241265D9BE3F954EB979A010&group_id=7312473532829745700&tt_from=mobile_qq&utm_source=mobile_qq&utm_medium=toutiao_android&utm_campaign=client_share&share_token=ca5d0d2a-2d9b-4959-b5c0-3dd869555240&source=m_redirect
推荐5款本周 超火 的开源AI项目
原创2023-12-15 07:32·程序员梓羽同学


https://blog.csdn.net/chenlu5201314/article/details/131156770?share_token=b8796ff0-44f8-471a-af6d-c1bc7ca57002
【开源工具】使用Whisper提取视频、语音的字幕
1、下载安装包Assets\WhisperDesktop.zip


https://www.toutiao.com/article/7222852915286016544/?app=news_article&timestamp=1706460752&use_new_style=1&req_id=2024012900523164164830D4E1ECF3CCE2&group_id=7222852915286016544&tt_from=mobile_qq&utm_source=mobile_qq&utm_medium=toutiao_android&utm_campaign=client_share&share_token=9bc8621f-b3b1-4f49-ae20-5214c1254515&source=m_redirect
从零开始,手把手教本地部署Stable Diffusion AI绘画 V3版 (Win最新)
原创2023-04-17 11:23·觉悟之坡


https://blog.csdn.net/S_eashell/article/details/135258411?share_token=f998e896-6dff-4fd4-8df2-c6aae132e95c
98秒转录2.5小时音频,最强音频转文字软件insanely-fast-whisper下载部署
老艾的AI世界 已于 2024-01-05 20:20:51 修改

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/253199.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android Studio从零基础到APP上线(3)

第3章 简单控件 本章介绍App开发常见的几类简单控件的用法,主要包括:显示文字的文本视图,容纳视图的常用布局,响应点击的按钮控件,显示图片的图像视图等。然后结合本章所学的知识,演示一个实战项目“简单计算器”的设计与实现。 3.1 文本显示 本节介绍如何在文本视图Tex…

【优先级队列(大顶堆 小顶堆)】【遍历哈希表键值对】Leetcode 347 前K个高频元素

【优先级队列&#xff08;大顶堆 小顶堆&#xff09;】【排序】Leetcode 347 前K个高频元素 1.不同排序法归纳2.大顶堆和小顶堆3.PriorityQueue操作4.PriorityQueue的升序&#xff08;默认&#xff09;与降序5.问题解决&#xff1a;找前K个最大的元素 &#xff1a;踢走最小的&…

Java多态原理

参考 虚方法 JVM杂记&#xff1a;对多态实现原理、虚方法表、虚方法、静态解析、动态链接的一些思考_多态和方法表的关系-CSDN博客 静态分派与动态分派 &#xff08;JVM&#xff09;Java虚拟机&#xff1a;静态分派 & 动态分派 原理解析 - 掘金 虚方法表 JVM 栈帧&am…

【C++】类和对象(3)

继续学习类和对象的最后一部分知识&#xff0c;主要有初始化列表、static成员、友元、内部类、匿名对象等。 目录 再谈构造函数 构造函数体赋值 初始化列表 explicit关键字 static成员 概念 特性 友元 友元函数 友元类 内部类 匿名对象 拷贝对象时的一些编译器优化…

跨境电商新风潮:充分发挥海外云手机的威力

在互联网行业迅速发展的大环境下&#xff0c;跨境电商、海外社交媒体营销以及游戏产业等重要领域都越来越需要借助海外云手机的协助。 特别是在蓬勃发展的跨境电商领域&#xff0c;像亚马逊、速卖通、eBay等平台&#xff0c;结合社交电商营销和短视频内容成为最有效的流量来源。…

2024-2-6-复习作业

1> 要求&#xff1a; 源代码&#xff1a; #include <stdio.h> #include <stdlib.h> void output(int arr[],int len) {for(int i0;i<len;i){printf("%d ",arr[i]);}puts(""); } void bubble_sort(int arr[],int len) {for(int i1;i<…

【Linux Day15 TCP网络通讯】

TCP网络通讯 TCP编程流程 接口介绍 socket()方法是用来创建一个套接字&#xff0c;有了套接字就可以通过网络进行数据的收发。创建套接字时要指定使用的服务类型&#xff0c;使用 TCP 协议选择流式服务&#xff08;SOCK_STREAM&#xff09;。 **bind()方法是用来指定套接字使…

JavaScript基础第二天

JavaScript基础第二天 今天我们学习if分支语句、三元表达式和switch-case语句。 1. if分支语句 1.1 语法 if (条件表达式){// 满足条件要执行的语句 } else {// 不满足条件要执行的语句 }if中的内容如果为true&#xff0c;就执行大括号的代码块&#xff0c;如果为false执行…

node.js后端+小程序前端+mongoDB(增删改查)

前言 今天我对比了以下node.js的express与python的fastAPI&#xff0c;我决定我还是出一期关于node.jsmangoDB小程序的小案例吧。 不是python的fastAPI不好用&#xff0c;因为fastAPI是python较新的技术&#xff0c;我不敢果断发出教学文章&#xff08;这件事情还是留着给pyt…

模拟请求ElasticSearch

Step1 安装chrome的这个插件 Step2 打开插件&#xff0c;GET的json填什么。 在IDEA的debug模式&#xff0c;走到Java代码的searchBuilder&#xff0c; 在这个searchBuilder变量里&#xff0c;对里面query变量点右侧 view按钮&#xff0c; IDEA里会显示出一个json&#xff…

【Qt学习笔记】(三)常用控件(持续更新)

Qt 常用控件 1 控件概述2 QWidget 控件核心属性2.1 enabled2.2 geometry2.3 window frame 的影响2.4 windowTitle2.5 window Icon2.6 windowOpacity2.7 cursor2.8 font2.9 toolTip2.10 focusPolicy2.11 stylesheet 1 控件概述 Widget是Qt中的核心概念英文原义是"小部件&q…

Nicn的刷题日常之获得月份天数

目录 1.题目描述 描述 输入描述&#xff1a; 输出描述&#xff1a; 示例1 2.解题 1.题目描述 描述 KiKi想获得某年某月有多少天&#xff0c;请帮他编程实现。输入年份和月份&#xff0c;计算这一年这个月有多少天。 输入描述&#xff1a; 多组输入&#xff0c;一行有两…

springboot Feign方式注入注解详解

一、FeignClient注解详解 FeignClient是Spring Cloud中用于声明Feign客户端的注解&#xff0c;它使得编写HTTP客户端变得更简单。通过Feign的自动化配置机制&#xff0c;可以很容易地编写HTTP API客户端。以下是FeignClient的详解&#xff1a; 作用&#xff1a;FeignClient注解…

解决SpringBoot官网创建SpringBoot项目但Java版本只能勾选17和21的情况

IDEA页面创建Spring项目&#xff0c;其实是访问spring initializr去创建项目。我们可以通过阿里云国服去间接创建Spring项目。服务器URL地址替换为 https://start.aliyun.com

BeginCTF2024 RE 部分复现

8. arc 上面一托混淆&#xff0c;左边似乎是三个东西相乘 单独取出最左边一托打印&#xff0c;可以得到大数组 接下来要解密&#xff0c;原代码非常混乱&#xff0c;我们先整理一下&#xff0c;简单去混淆 print (all([[data][a][d] e for a, b in enumerate([[int(a) for a …

【开源】SpringBoot框架开发大病保险管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 系统配置维护2.2 系统参保管理2.3 大病保险管理2.4 大病登记管理2.5 保险审核管理 三、系统详细设计3.1 系统整体配置功能设计3.2 大病人员模块设计3.3 大病保险模块设计3.4 大病登记模块设计3.5 保险审核模块设计 四、…

关于Django部署

首先了解一下开发环境服务器跟生产环境服务器有何不同。 一、我们通过 python manage.py runserver 启动开发环境服务器&#xff0c;这条命令背后做了哪些事情&#xff1f; 1、首先加载Django项目的设置&#xff08;settings&#xff09; 2、检查数据库迁移&#xff0c;确保数…

本地缓存Ehcache的应用实践 | 京东云技术团队

java本地缓存包含多个框架&#xff0c;其中常用的包括&#xff1a;Caffeine、Guava Cache和Ehcache&#xff0c; 其中Caffeine号称本地缓存之王&#xff0c;也是近年来被众多程序员推崇的缓存框架&#xff0c;同时也是SpringBoot内置的本地缓存实现。但是除了Caffeine之外&…

Cocos creator 3.x 刚体组件碰撞无效

Cocos creator 3.x 刚体组件碰撞无效 问题描述&#xff1a;只有一个circleCollider2D时&#xff0c;可以在碰撞时正确输出结果&#xff0c;但是当我在外围加了一个circle之后&#xff0c;期望character进入圆圈范围时就触发方法&#xff0c;此时原代码失效 import { _decorat…

Kubernetes基础(十四)-k8s网络通信

1 k8s网络类型 2 Pod网络 2.1 同一pod内不同容器通信 Pod是Kubernetes中最小的可部署单元&#xff0c;它是一个或多个紧密关联的容器的组合&#xff0c;这些容器共享同一个网络命名空间和存储卷&#xff0c;因此Pod中的所有容器都共享相同的网络命名空间和IP地址——PodIP&a…