机器学习系列——(二十)密度聚类

引言

在机器学习的无监督学习领域,聚类算法是一种关键的技术,用于发现数据集中的内在结构和模式。与传统的基于距离的聚类方法(如K-Means)不同,密度聚类关注于数据分布的密度,旨在识别被低密度区域分隔的高密度区域。这种方法在处理具有复杂形状和大小的聚类时表现出色,尤其擅长于识别噪声和异常值。本文将详细介绍密度聚类的概念、主要算法及其应用。

一、概述

密度聚类基于一个核心思想:聚类可以通过连接密度相似的点来形成,即一个聚类是由一组密度连续且足够高的点组成的。这意味着聚类的形成不依赖于任何预定的形状,而是由数据本身的分布决定。密度聚类的优点在于它不仅能够识别出任意形状的聚类,还能在聚类过程中有效地识别并处理噪声点。

二、主要算法

2.1 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)

DBSCAN是最著名的密度聚类算法之一,它根据高密度区域的连通性来进行聚类。DBSCAN的核心概念包括:

  • 核心点:在指定半径( \epsilon )内含有超过最小数量( MinPts )的点。
  • 边缘点:在( \epsilon )半径内点的数量少于( MinPts ),但属于核心点的邻域。
  • 噪声点:既不是核心点也不是边缘点的点。

DBSCAN算法的步骤如下:

  1. 对每个点,计算其( \epsilon )邻域内的点数。
  2. 标记满足核心点条件的点。
  3. 对每个核心点,如果它还没有被分配到任何聚类,创建一个新的聚类,并递归地将所有密度可达的核心点添加到这个聚类。
  4. 将边缘点分配给相邻的核心点的聚类。
  5. 剩下的点标记为噪声。

2.2 OPTICS(Ordering Points To Identify the Clustering Structure)

OPTICS算法是对DBSCAN的一种改进,旨在克服DBSCAN在处理不同密度区域的数据集时的局限性。OPTICS不直接进行聚类划分,而是创建一个达到顺序的点列表,这个顺序反映了数据结构的内在聚类。通过这个列表,可以根据需要生成不同密度阈值的聚类结果。

OPTICS算法的关键在于它引入了两个新概念:

  • 核心距离:对于任何核心点,其核心距离是到达( MinPts )个最近邻的距离。
  • 可达距离:点A到点B的可达距离是核心点A的核心距离与A到B的实际距离中的较大值。

通过这两个度量,OPTICS评估并排序数据点,以揭示数据的聚类结构。

2.3举例

下面是一个使用Python中的sklearn库来实现DBSCAN算法的简单示例。这个例子将展示如何使用DBSCAN对二维数据进行聚类分析。

首先,我们需要安装sklearn库(如果尚未安装):

pip install scikit-learn

然后,可以使用以下代码来生成一些模拟数据并应用DBSCAN算法进行聚类:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_moons
from sklearn.cluster import DBSCAN# 生成模拟数据
X, _ = make_moons(n_samples=300, noise=0.1, random_state=42)# 应用DBSCAN算法
# eps: 邻域的大小
# min_samples: 形成一个簇所需的最少样本点数
dbscan = DBSCAN(eps=0.2, min_samples=5)
dbscan.fit(X)# 获取聚类标签
labels = dbscan.labels_# 绘制结果
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', marker='o', s=50, edgecolor='k')
plt.title('DBSCAN Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.colorbar()
plt.show()# 打印噪声点(标记为-1的点)
noise = np.sum(labels == -1)
print(f"Detected noise points: {noise}")

在这个例子中,我们首先使用make_moons函数生成了300个样本点,这些点形成了两个半圆形(或称为月牙形)的分布,这是一个非常典型的用于测试聚类算法性能的数据集,因为它的聚类结构不是全局线性可分的。

接着,我们创建了一个DBSCAN实例,并设置了两个关键参数:epsmin_sampleseps参数定义了搜索邻居的半径大小,而min_samples定义了一个区域内点的最小数量,这个数量足以让这个区域被认为是一个密集区域。通过调整这两个参数,可以控制聚类的粒度。

最后,我们使用.fit()方法对数据进行拟合,并通过.labels_属性获取每个点的聚类标签。我们使用matplotlib库绘制了聚类结果,并通过颜色区分了不同的聚类。

三、密度聚类的应用

密度聚类在许多领域都有广泛的应用,特别是在那些传统聚类方法难以处理的复杂数据集中。以下是一些典型的应用场景:

  • 异常检测:通过识别噪声点,密度聚类可以用于识别异常值或离群点。
  • 地理空间数据分析:如根据地理位置信息对地点进行聚类,找出热点区域。
  • 生物信息学:在基因表达数据分析中,密度聚类能够帮助识别具有相似表达模式的基因。
  • 图像分割:将图像分割成若干区域,每个区域由相似密度的像素点组成。

四、结语

密度聚类提供了一种强大的工具,用于发现数据集中的自然聚类和噪声点。通过关注数据的局部密度特征,它能够识别出任意形状的聚类,并有效处理噪声和异常值。DBSCAN和OPTICS等算法的发展,使得密度聚类成为处理复杂数据集的有力方法。随着数据科学领域的不断进步,密度聚类仍将是未来数据分析和模式识别研究的重要方向之一。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/254757.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

力扣刷题之旅:进阶篇(六)—— 图论与最短路径问题

力扣(LeetCode)是一个在线编程平台,主要用于帮助程序员提升算法和数据结构方面的能力。以下是一些力扣上的入门题目,以及它们的解题代码。 --点击进入刷题地址 引言 在算法的广阔天地中,图论是一个非常重要的领域。…

林浩然与杨凌芸的Java异常处理大冒险

林浩然与杨凌芸的Java异常处理大冒险 Lin Haoran and Yang Lingyun’s Java Exception Handling Adventure 在一个阳光明媚的午后,编程世界的英雄——林浩然和杨凌芸坐在Java王国的咖啡馆里,一边品尝着香醇的代码咖啡,一边探讨着他们的最新挑…

Excel——高级筛选匹配条件提取数据

一、筛选多条件 Q:筛选多个条件,并将筛选出的内容复制到其他区域 点击任意一个单元格 点击【数据】——【筛选】——【高级筛选】 选择【将筛选结果复制到其他位置】——在【列表区域】 鼠标选择对应的区域位置,条件区域一定要单独写出来&a…

ChatGPT学习第一周

📖 学习目标 掌握ChatGPT基础知识 理解ChatGPT的基本功能和工作原理。认识到ChatGPT在日常生活和业务中的潜在应用。 了解AI和机器学习的基本概念 获取人工智能(AI)和机器学习(ML)的初步了解。理解这些技术是如何支撑…

Flink从入门到实践(一):Flink入门、Flink部署

文章目录 系列文章索引一、快速上手1、导包2、求词频demo(1)要读取的数据(2)demo1:批处理(离线处理)(3)demo2 - lambda优化:批处理(离线处理&…

【机器学习】数据清洗之识别缺失点

🎈个人主页:甜美的江 🎉欢迎 👍点赞✍评论⭐收藏 🤗收录专栏:机器学习 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进步…

[神奇代码岛】皮肤功能使用

前言 最近有很多人在制作地图的时候,因该会用到皮肤的功能,但是皮肤操作只知道UI操作,但缺点是,只能设置地图默认皮肤,根本都做不到想要的什么皮肤购买功能,自主穿戴功能,而API官方又放在非常隐…

老胡的周刊(第128期)

老胡的信息周刊[1],记录这周我看到的有价值的信息,主要针对计算机领域,内容主题极大程度被我个人喜好主导。这个项目核心目的在于记录让自己有印象的信息做一个留存以及共享。 🎯 项目 coze-discord-proxy[2] 代理 Discord-Bot 对…

微服务OAuth 2.1扩展额外信息到JWT并解析(Spring Security 6)

文章目录 一、简介二、重写UserDetailsService三、Controller解析JWT获取用户信息四、后记 一、简介 VersionJava17SpringCloud2023.0.0SpringBoot3.2.1Spring Authorization Server1.2.1Spring Security6.2.1mysql8.2.0 Spring Authorization Server 使用JWT时,前…

PbootCMS采集插件使用教程

这篇Pboot采集教程教你使用PbootCMS采集插件,自动批量采集网页文章数据,并发布到PbootCMS系统,快速丰富网站的内容。 1. 下载并安装PbootCMS采集插件 1-1)PbootCMS采集插件免费下载:Pboot采集插件-PbootCMS发布模块下…

【Docker】私有仓库

目录 1.搭建 2. 上传镜像 3.拉取镜像 1.搭建 1.拉取私有仓库的镜像 docker pull registry 2.创建私有仓库容器 docker run -id --nameregistry -p 5000:5000 registry 3.打开浏览器,输入地址(http:私有仓库服务器ip:5000/v2/_catalog) 出现如图表示私…

如何运行心理学知识(心流)来指导工作和生活

如何运用心流来指导工作和生活 如何联系我 作者:鲁伟林 邮箱:thinking_fioa163.com或vlinyes163.com GitHub:https://github.com/thinkingfioa/ReadingSummary 版权声明:文章和记录为个人所有,如果转载或个人学习…

TDengine用户权限管理

Background 官方文档关于用户管理没有很详细的介绍,只有零碎的几条,这里记录下方便后面使用。官方文档:https://docs.taosdata.com/taos-sql/show/#show-users 1、查看用户 show users;super 1,表示超级用户权限 0,表…

MySQL用心总结

大家好,好久不见,今天笔者用心一步步写一份mysql的基础操作指南,欢迎各位点赞收藏 -- 启动MySQL net start mysql-- 创建Windows服务 sc create mysql binPath mysqld_bin_path(注意:等号与值之间有空格) mysql -h 地址 -…

kmeans聚类选择最优K值python实现

Kmeans算法中K值的确定是很重要的。 下面利用python中sklearn模块进行数据聚类的K值选择 数据集自制数据集,格式如下: 维度为3。 ①手肘法 手肘法的核心指标是SSE(sum of the squared errors,误差平方和), 其中,Ci是第…

【数据分享】1929-2023年全球站点的逐年平均降水量(Shp\Excel\免费获取)

气象数据是在各项研究中都经常使用的数据,气象指标包括气温、风速、降水、湿度等指标,说到常用的降水数据,最详细的降水数据是具体到气象监测站点的降水数据! 有关气象指标的监测站点数据,之前我们分享过1929-2023年全…

华为视频监控接入到视频监控平台 (华为网路监控摄像机IPC和华为视频节点设备VCN)

目 录 一、设备介绍 1.1 华为VCN介绍 1.2 AS-V1000视频监控平台介绍 1.3 平台服务器配置说明 二、安装、配置HW_IVS软件 2.1下载安装HW_IVS软件 2.2登录HW_IVS 2.3共享到外域 三、配置华为外域参数 3.1 PCG模块设置 3.2通信协议GBT28181配置 3.3传…

k8s学习(RKE+k8s+rancher2.x)成长系列之简配版环境搭建(二)

三、简配版集群,适用于demo环境 1.集群架构设计 主机名角色配置(核数,内存,磁盘)MasterRKE,controlplane,etcd,worker,rancher-master2C 8G 40GSlaver1controlplane,worker,rancher-master2C 8G 40GSlaver2controlplane,worker,rancher-mas…

[office] 怎么在Excel2003菜单栏自定义一个选项卡 #其他#微信#知识分享

怎么在Excel2003菜单栏自定义一个选项卡 怎么在Excel2003菜单栏自定义一个选项卡 ①启动Excel2003,单击菜单栏--工具--自定义。 ②在自定义界面,我们单击命令标签,在类别中选择新菜单,鼠标左键按住新菜单,拖放到菜单栏…

MATLAB环境下一维时间序列信号的同步压缩小波包变换

时频分析相较于目前的时域、频域信号处理方法在分析时变信号方面,其主要优势在于可以同时提供时域和频域等多域信号信息,并清晰的刻画了频率随时间的变化规律,已被广泛用于医学工程、地震、雷达、生物及机械等领域。 线性时频分析方法是将信…