【图形图像的C++ 实现 01/20】 2D 和 3D 贝塞尔曲线

目录

  • 一、说明
  • 二、贝塞尔曲线特征
  • 三、模拟
  • 四、全部代码如下
  • ​五、资源和下载

一、说明

   以下文章介绍了用 C++ 计算和绘制的贝塞尔曲线(2D 和 3D)。
   贝塞尔曲线具有出色的数学能力来计算路径(从起点到目的地点的曲线)。曲线的形状由“控制点”决定。所讨论的曲线最重要的特征是平滑度。
   在许多应用和领域中,平滑度是不可或缺的。我们可以考虑机器人或其他机器的运动,其中运动必须是可预测的,以确保人员和硬件的安全(低磨损系数)。当机器人关节的轨迹被计算为平滑路径时,我们可以假设机器人将按照规划的路径平滑地移动,不会出现急动或意外移动。请注意,在我们考虑的机器人技术中,除了路径之外,还有速度、加速度、冲击力和电机扭矩。所有这些参数主要影响最终路径。
   除了机器人技术之外,贝塞尔曲线还用于动画、游戏和设计。

   为了绘图的目的,我将使用我之前的文章中讨论过的 C++ 的 matplotlib 库。
   头文件(用于绘图库)必须与您的 cpp 位于同一文件夹中。您的程序可以按如下方式编译,

​//compile
g++ my_prog.cpp -o my_prog -I/usr/include/python3.8 -lpython3.8// 
//run
./my_prog
//folder tree
├── my_prog
├── my_prog.cpp
├── matplotlibcpp.h

二、贝塞尔曲线特征

   可以计算点集的贝塞尔曲线: { P0, P1, P2 …Pn},其中n定义我们建模的曲线(多项式)的阶数。在每种情况下,第一个点和最后一个点定义曲线的起点和终点的位置。其他点 - 控制点通常不属于计算的曲线,而是影响贝塞尔曲线的形状。

   2D中的每个点P都有两个{x,y}笛卡尔坐标,但在3D中,点P按预期由三个{x, y, z}定义。

   贝塞尔曲线的显式定义可以指定如下(我们将在模拟中使用这个公式)。

在这里插入图片描述
这里
在这里插入图片描述

   是二项式系数。

   在我们的例子中,二项式系数的计算如下(如果您查看维基百科,您会发现递归实现,但这是最简单的版本或更直观)。

   C++ 中的实现可以如下所示,

double computeBinominal(int n, int k)
{double value = 1.0;for (int i = 1; i <= k; i++){value = value * ((n + 1 - i) / i);}if (n == k){value = 1;}return value;
}


平面空间中的四个点P 0 、P 1 、P 2 和P 3 定义三次贝塞尔曲线。该曲线可以建模为三阶多项式。
在这里插入图片描述

当提供六个点P 0、P 1、P 2、P 3、P4和P5时,贝塞尔曲线被计算为五阶多项式。

在这里插入图片描述

三、模拟

   现在我们将显示上面定义的曲线的 2D 和 3D 模拟(针对 4 点和 6 点)。下面的代码为您提供了计算和绘制您想要的任何数字点P 的贝塞尔曲线的绝佳机会。

x{2.5, 1.5, 6.0, 10.0}; 
y{0.5, 5.0, 5.0, 0.5};x{2.5, 1.5, 6.0, 10.0}; 
//与 2D y{0.5, 5.0, 5.0, 0.5}相同;
//与 2D z{1.0, 2.0, 3.0, 4.0}相同;X{2.5, 1.5, 6, 10, 7, 3}; 
Y{0.5, 5.0, 5.0, 0.5, 1.0, 2.0};X{2.5, 1.5, 6.0, 10.0, 7.0, 3.0}; // 对于 2D 
Y{0.5, 5.0, 5.0, 0.5, 1.0 , 2.0}; // 对于 2D 
Z{1.0, 2.0, 3.0, 4.0, 5.0, 0.1};

在这里插入图片描述
对于相同阶的多项式(三阶),我们可以计算 3D 贝塞尔曲线。

x{2.5, 1.5, 6.0, 10.0}; //same as 2D
y{0.5, 5.0, 5.0, 0.5}; //same as 2D
z{1.0, 2.0, 3.0, 4.0};

在这里插入图片描述
这是一条 2D 贝塞尔曲线,它是针对五阶多项式(六点)计算的。

X{2.5, 1.5, 6, 10, 7, 3};
Y{0.5, 5.0, 5.0, 0.5, 1.0 , 2.0};

在这里插入图片描述
和以前一样,我们可以绘制 3D 贝塞尔曲线。

X{2.5, 1.5, 6.0, 10.0, 7.0, 3.0}; //as for 2D
Y{0.5, 5.0, 5.0, 0.5, 1.0 , 2.0}; //as for 2D
Z{1.0, 2.0, 3.0, 4.0, 5.0, 0.1};

在这里插入图片描述

四、全部代码如下

/// g++ bezier_curve.cpp -o t -I/usr/include/python3.8 -lpython3.8#include <iostream>
#include <vector>
#include <tuple>
#include <math.h>#include "matplotlibcpp.h"namespace plt = matplotlibcpp;//-----------------------------------------------------------std::tuple<std::vector<double>, std::vector<double>> computeBesierCurve2D(std::vector<double> xX, std::vector<double> yY)
{std::vector<double> bCurveX;std::vector<double> bCurveY;double bCurveXt;double bCurveYt;for (double t = 0.01; t <= 1; t += 0.01){bCurveXt = std::pow((1 - t), 3) * xX[0] + 3 * std::pow((1 - t), 2) * t * xX[1] + 3 * std::pow((1 - t), 1) * std::pow(t, 2) * xX[2] + std::pow(t, 3) * xX[3];bCurveYt = std::pow((1 - t), 3) * yY[0] + 3 * std::pow((1 - t), 2) * t * yY[1] + 3 * std::pow((1 - t), 1) * std::pow(t, 2) * yY[2] + std::pow(t, 3) * yY[3];bCurveX.push_back(bCurveXt);bCurveY.push_back(bCurveYt);}return std::make_tuple(bCurveX, bCurveY);
}//-----------------------------------------------------------void plot2D(std::tuple<std::vector<double>, std::vector<double>> data)
{std::vector<double> xX = std::get<0>(data);std::vector<double> yY = std::get<1>(data);plt::plot(xX, yY);plt::show();
}//-----------------------------------------------------------std::tuple<std::vector<double>, std::vector<double>, std::vector<double>> computeBesierCurve3D(std::vector<double> xX, std::vector<double> yY, std::vector<double> zZ)
{std::vector<double> bCurveX;std::vector<double> bCurveY;std::vector<double> bCurveZ;double bCurveXt;double bCurveYt;double bCurveZt;for (double t = 0.01; t <= 1; t += 0.01){bCurveXt = std::pow((1 - t), 3) * xX[0] + 3 * std::pow((1 - t), 2) * t * xX[1] + 3 * std::pow((1 - t), 1) * std::pow(t, 2) * xX[2] + std::pow(t, 3) * xX[3];bCurveYt = std::pow((1 - t), 3) * yY[0] + 3 * std::pow((1 - t), 2) * t * yY[1] + 3 * std::pow((1 - t), 1) * std::pow(t, 2) * yY[2] + std::pow(t, 3) * yY[3];bCurveZt = std::pow((1 - t), 3) * yY[0] + 3 * std::pow((1 - t), 2) * t * yY[1] + 3 * std::pow((1 - t), 1) * std::pow(t, 2) * yY[2] + std::pow(t, 3) * yY[3];bCurveX.push_back(bCurveXt);bCurveY.push_back(bCurveYt);bCurveZ.push_back(bCurveZt);}return std::make_tuple(bCurveX, bCurveY, bCurveZ);
}//-----------------------------------------------------------void plot3Dexample()
{std::vector<double> xX;std::vector<double> yY;std::vector<double> zZ;double theta;double r;double z_inc = 4.0 / 99.0;double theta_inc = (8.0 * M_PI) / 99.0;for (double i = 0; i < 100; i += 1){theta = -4.0 * M_PI + theta_inc * i;zZ.push_back(-2.0 + z_inc * i);r = zZ[i] * zZ[i] + 1;xX.push_back(r * std::sin(theta));yY.push_back(r * std::cos(theta));}plt::plot3(xX, yY, zZ);plt::show();
}//-----------------------------------------------------------void plot3D(std::tuple<std::vector<double>, std::vector<double>, std::vector<double>> data)
{std::vector<double> xX = std::get<0>(data);std::vector<double> yY = std::get<1>(data);std::vector<double> zZ = std::get<2>(data);plt::plot3(xX, yY, zZ);plt::xlabel("x");plt::ylabel("y");plt::set_zlabel("z");plt::show();
}//-----------------------------------------------------------double computeBinominal(int n, int k)
{double value = 1.0;for (int i = 1; i <= k; i++){value = value * ((n + 1 - i) / i);}if (n == k){value = 1;}return value;
}//-----------------------------------------------------------std::tuple<std::vector<double>, std::vector<double>> computeNVertexBasierCurve2D(std::vector<double> xX, std::vector<double> yY)
{std::vector<double> bCurveX;std::vector<double> bCurveY;int n = xX.size() - 1;std::cout << "n :" << n << "\n";for (double t = 0.0; t <= 1.0; t += 0.01){double bCurveXt{0};double bCurveYt{0};for (int i = 0; i <= n; ++i){bCurveXt += computeBinominal(n, i) * std::pow((1 - t), (n - i)) * std::pow(t, i) * xX[i];bCurveYt += computeBinominal(n, i) * std::pow((1 - t), (n - i)) * std::pow(t, i) * yY[i];//std::cout << " t= "<< t<< " i=" << i << " bCurveXt=" << bCurveXt << " = " << computeBinominal(n, i)  << " * " << std::pow((1 - t), (n - i))  << " * " << std::pow(t, i) << " * " << xX[i] << std::endl;}bCurveX.push_back(bCurveXt);bCurveY.push_back(bCurveYt);}return std::make_tuple(bCurveX, bCurveY);
}std::tuple<std::vector<double>, std::vector<double>, std::vector<double>> computeNVertexBasierCurve3D(std::vector<double> xX, std::vector<double> yY, std::vector<double> zZ)
{std::vector<double> bCurveX;std::vector<double> bCurveY;std::vector<double> bCurveZ;int n = xX.size() - 1;std::cout << "n :" << n << "\n";for (double t = 0.0; t <= 1.0; t += 0.01){double bCurveXt{0};double bCurveYt{0};double bCurveZt{0};for (int i = 0; i <= n; ++i){bCurveXt += computeBinominal(n, i) * std::pow((1 - t), (n - i)) * std::pow(t, i) * xX[i];bCurveYt += computeBinominal(n, i) * std::pow((1 - t), (n - i)) * std::pow(t, i) * yY[i];bCurveZt += computeBinominal(n, i) * std::pow((1 - t), (n - i)) * std::pow(t, i) * zZ[i];//std::cout << " t= "<< t<< " i=" << i << " bCurveXt=" << bCurveXt << " = " << computeBinominal(n, i)  << " * " << std::pow((1 - t), (n - i))  << " * " << std::pow(t, i) << " * " << xX[i] << std::endl;}bCurveX.push_back(bCurveXt);bCurveY.push_back(bCurveYt);bCurveZ.push_back(bCurveZt);}return std::make_tuple(bCurveX, bCurveY, bCurveZ);
}//-----------------------------------------------------------int main()
{std::vector<double> xX{2.5, 1.5, 6, 10};std::vector<double> yY{0.5, 5, 5, 0.5};std::vector<double> zZ{1.0, 2.0, 3.0, 4.0};std::tuple<std::vector<double>, std::vector<double>> bCurve2D = computeBesierCurve2D(xX, yY);plot2D(bCurve2D);std::tuple<std::vector<double>, std::vector<double>, std::vector<double>> bCurve3D = computeBesierCurve3D(xX, yY, zZ);plot3D(bCurve3D);std::vector<double> xXn{2.5, 1.5, 6, 10, 7, 3};std::vector<double> yYn{0.5, 5, 5, 0.5, 1.0 , 2.0};std::vector<double> zZn{1, 2, 3, 4, 5, 0.1};std::tuple<std::vector<double>, std::vector<double>> bCurve2DxN = computeNVertexBasierCurve2D(xXn, yYn);plot2D(bCurve2DxN);std::tuple<std::vector<double>, std::vector<double>, std::vector<double>> bCurve3DxN = computeNVertexBasierCurve3D(xXn, yYn, zZn);plot3D(bCurve3DxN);}

​五、资源和下载

下面给出源代码资源下载链接地址:
https://download.csdn.net/download/gongdiwudu/88821722

​​

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/254888.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

YOLOv8改进 | 检测头篇 | 独创RFAHead检测头超分辨率重构检测头(适用Pose、分割、目标检测)

一、本文介绍 本文给大家带来的改进机制是RFAHead,该检测头为我独家全网首发,本文主要利用将空间注意力机制与卷积操作相结合的卷积RFAConv来优化检测头,其核心在于优化卷积核的工作方式,特别是在处理感受野内的空间特征时。RFAConv主要的优点就是增加模型的特征提取能力,…

HiveSQL——sum(if()) 条件累加

注&#xff1a;参考文章&#xff1a; HiveSql面试题10--sum(if)统计问题_hive sum if-CSDN博客文章浏览阅读5.8k次&#xff0c;点赞6次&#xff0c;收藏19次。0 需求分析t_order表结构字段名含义oid订单编号uid用户idotime订单时间&#xff08;yyyy-MM-dd&#xff09;oamount订…

ChatGPT高效提问—prompt常见用法(续篇七)

ChatGPT高效提问—prompt常见用法&#xff08;续篇七&#xff09; 1.1 零样本、单样本和多样本 ​ ChatGPT拥有令人惊叹的功能和能力&#xff0c;允许用户自由向其提问&#xff0c;无须提供任何具体的示例样本&#xff0c;就可以获得精准的回答。这种特性被称为零样本&#x…

PWM输入输出

PWM&#xff08;Pulse Width Modulation&#xff09;即脉冲宽度调制&#xff0c;在具有惯性的系统中&#xff0c;可以通过对一系列脉冲的宽度进行制&#xff0c;来等效地获得所需要的模拟参量&#xff0c;常应用于电机控速、开关电源等领域。 PWM参数 PWM 中有三个重要参数&…

如何开始深度学习,从实践开始

将“如何开始深度学习”这个问题喂给ChatGPT和文心一言&#xff0c;会给出很有专业水准的答案&#xff0c;比如&#xff1a; 要开始深度学习&#xff0c;你可以遵循以下步骤&#xff1a; 学习Python编程语言的基础知识&#xff0c;因为它在深度学习框架中经常被使用。 熟悉线性…

基于tomcat运行jenkins常见的报错处理

目录 1.jenkins.util.SystemProperties$Listener错误 升级jdk11可能遇到的坑 2.java.lang.RuntimeException: Fontconfig head is null, check your fonts or fonts configuration 3.There were errors checking the update sites: UnknownHostException:updates.jenkins.i…

03 动力云客项目之登录功能后端实现

1 准备工作 1.1 创建项目 使用Spring initializr初始化项目 老师讲的是3.2.0, 但小版本之间问题应该不大. 1.2 项目结构 根据阿里巴巴Java开发手册确定项目结构 1.3 分层领域模型 【参考】分层领域模型规约&#xff1a; • DO&#xff08;Data Object&#xff09;&am…

(四)elasticsearch 源码之索引流程分析

https://www.cnblogs.com/darcy-yuan/p/17024341.html 1.概览 前面我们讨论了es是如何启动&#xff0c;本文研究下es是如何索引文档的。 下面是启动流程图&#xff0c;我们按照流程图的顺序依次描述。 其中主要类的关系如下: 2. 索引流程 (primary) 我们用postman发送请求&…

【正式】今年第一篇CSDN(纯技术教学)

一、文件上传简介 文件上传漏洞是指用户上传了一个可执行的脚本文件&#xff08;木马、病毒、恶意脚本、webshell等&#xff09;&#xff0c;并通过此脚本文件获得了执行服务器端命令的能力。上传点一般出现在头像、导入数据、上传压缩包等地方&#xff0c;由于程序对用户上传…

Vue2中v-for 与 v-if 的优先级

在Vue2中&#xff0c;v-for 和 v-if 是常用的指令&#xff0c;它们在前端开发中非常有用。但是&#xff0c;当我们在同一个元素上同时使用这两个指令时&#xff0c;就需要注意它们的优先级关系了。 首先&#xff0c;让我们了解一下v-for和v-if的基本用法。 v-for 是Vue的内置…

Leetcode 213 打家劫舍 II

题意理解&#xff1a; 你是一个专业的小偷&#xff0c;计划偷窃沿街的房屋&#xff0c;每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 &#xff0c;这意味着第一个房屋和最后一个房屋是紧挨着的。同时&#xff0c;相邻的房屋装有相互连通的防盗系统&#xff0c;如果…

three.js 向量方向(归一化.normalize)

效果&#xff1a; <template><div><el-container><el-main><div class"box-card-left"><div id"threejs" style"border: 1px solid red"></div><div><p><el-button type"primary…

Web后端开发:事务与AOP

事务管理 在学习数据库时&#xff0c;讲到&#xff1a;事务是一组操作的集合&#xff0c;它是一个不可分割的工作单位。事务会把所有的操作作为一个整体&#xff0c;一起向数据库提交或者是撤销操作请求&#xff0c;要么同时成功&#xff0c;要么同时失败。 事务的操作主要有三…

传输频宽是啥?对网速影响有多大?

频宽&#xff0c;即WIFI频道宽度&#xff0c;又称为WIFI信道宽度&#xff0c;是WiFi Channel width的缩写。从科学的定义来说&#xff0c;Wi-Fi频道宽度&#xff0c;是指Wi-Fi无线信号在频谱上所占用的带宽大小。它决定了Wi-Fi网络的数据传输速率和稳定性&#xff0c;一般有20M…

Flink Checkpoint过程

Checkpoint 使用了 Chandy-Lamport 算法 流程 1. 正常流式处理&#xff08;尚未Checkpoint&#xff09; 如下图&#xff0c;Topic 有两个分区&#xff0c;并行度也为 2&#xff0c;根据奇偶数 我们假设任务从 Kafka 的某个 Topic 中读取数据&#xff0c;该Topic 有 2 个 Pa…

SpringCloud-搭建Nacos服务中心

Nacos 是一个开源的动态服务发现、配置管理和服务管理平台。它支持多种服务发现协议&#xff0c;包括基于 DNS 和 HTTP 的服务发现。Nacos 提供了强大的配置管理和服务发现功能&#xff0c;使得在微服务架构中轻松实现服务注册、发现和配置管理成为可能。在本篇博客中&#xff…

“极简壁纸“爬虫JS逆向·实战

文章目录 声明目标分析确定目标目标检索 代码补全完整代码 爬虫逻辑完整代码 运行结果 声明 本教程只用于交流学习&#xff0c;不可用于商业用途&#xff0c;不可对目标网站进行破坏性请求&#xff0c;请遵守相关法律法规。 目标分析 确定目标 获取图片下载链接 目标检索…

Excel+VBA处理高斯光束

文章目录 1 图片导入与裁剪2 获取图片数据3 数据拟合 1 图片导入与裁剪 插入图片没什么好说的&#xff0c;新建Excel&#xff0c;【插入】->【图片】。 由于图像比较大&#xff0c;所以要对数据进行截取&#xff0c;选中图片之后&#xff0c;点击选项卡右端的【图片格式】…

排序算法---归并排序

原创不易&#xff0c;转载请注明出处。欢迎点赞收藏~ 归并排序是一种常见的排序算法&#xff0c;它采用了分治的思想。它将一个待排序的数组递归地分成两个子数组&#xff0c;分别对两个子数组进行排序&#xff0c;然后将排好序的子数组合并成一个有序数组。 具体的归并排序过…

MQTT 服务器(emqx)搭建及使用

推荐阅读&#xff1a; MQTT 服务器(emqx)搭建及使用 - 哔哩哔哩 (bilibili.com) 一、EMQX 服务器搭建 1、下载EMQX https://www.emqx.com/zh/try?productbroker 官方中文手册&#xff1a; EMQX Docs 2、安装使用 1、该软件为绿色免安装版本&#xff0c;解压缩后即安装完…