微软 CMU - Tag-LLM:将通用大语言模型改用于专业领域

文章目录

  • 一、前言
  • 二、主要内容
  • 三、总结

🍉 CSDN 叶庭云https://yetingyun.blog.csdn.net/


一、前言

论文地址:https://arxiv.org/abs/2402.05140

Github 地址:https://github.com/sjunhongshen/Tag-LLM

大语言模型(Large Language Models,LLMs)在理解和生成自然语言方面展现出卓越的能力。然而,在预训练语料库中代表性不足的高度专业领域,例如物理和生物医学领域,LLMs 的能力可能会减弱。这项工作探讨了如何将通用 LLMs 改用于专门领域的有效任务求解器。研究者提出了一个新颖且与模型无关的框架,用于学习自定义输入标签(input tags)。这些标签被参数化为连续向量,附加到 LLM 的嵌入层,以调节 LLM。研究者设计了两种类型的输入标记:领域标签用于分隔专门的表示(例如,化学式)并提供领域相关的上下文;函数标签用于表示特定函数(例如,预测分子特性)并压缩函数求解指令。

在这里插入图片描述

研究者进而开发了一种三阶段协议,利用辅助数据和领域知识来学习这些标签。通过明确地将任务域与任务函数分开, Tag-LLM 能够通过不同输入标签的组合,对未见过的问题实现零样本泛化。此外,它在各种专业领域中的性能也有所提高,例如预测蛋白质或化学性质,以及建立药物与靶点相互作用模型。在这些任务上,它的性能优于为此类任务量身定制的专家模型。


二、主要内容

在 LLMs 领域中,一个长期存在的挑战是将最初设计用于一般用途的模型适应到专业领域并表现出色。感兴趣的领域通常涵盖高度专业化的学科,例如物理和生物医学。在这些领域中,数据与通常在自然语言处理中遇到的文本数据存在很大差异。为了弥补这一差距,Tag-LLM 框架旨在利用特定领域的输入标签,将通用 LLM 重新应用于专门的任务。这些标签被参数化为连续向量,并附加到 LLM 的嵌入层中,成为调节 LLM 功能以符合特定专业领域或任务要求的强大工具。

在这里插入图片描述

如上图所示:以蛋白质-药物结合亲和力预测任务为例,Tag-LLM 将领域标签 ⟨Protein⟩、⟨SMILES⟩ 和函数标签 ⟨Binding Affinity⟩ 注入输入,并映射到经过专门训练的嵌入。模型将最后一个隐藏状态传递到特定任务的头部,以生成所需的预测类型(例如,在本例中为标量结合亲和值)。

Tag-LLM 的设计和实现

Tag-LLM 将输入标签分为两类:领域标签和函数标签。领域标签用于给输入数据上下文化,向模型指明其处理的专业数据类型(例如化学式或蛋白质序列),而函数标签则指示模型进行具体任务,如预测分子特性或模拟药物与靶标的相互作用。这种分叉允许采用模块化方法来解决问题,通过部署各种输入标签组合,以 zero-shot 方式处理新的或未见过的任务。

为了学习这些标签,研究者开发了一个独特的三阶段协议,利用辅助数据集和领域知识逐步提高模型的理解能力和性能。在第一阶段中,通过使用域内数据进行 next-token prediction 任务来完善域标签。后续阶段涉及使用越来越专业化的面向任务的数据训练单个领域和跨领域的函数标签,以丰富模型解决不同领域复杂问题的能力。

经验结果与发现

实验结果表明,使用可学习的标签可以更细粒度地控制语言模型(LLM)。具体来说,使用实际文本(如 “Protein”)来条件化模型的效果在很大程度上取决于它在预训练语料库中的出现频率,但最终用户无法控制这一点。作者通过从目标领域的数据中显式学习标签嵌入来解决这个限制。实验还研究了标签长度对测试误差的影响。随着 p p p 值的增加,测试误差先减小后增大。这表明,虽然增加的自由度最初是有益的,但超过某个阈值可能会导致过拟合训练数据,从而阻碍测试时的性能。

经过定量评估,证明了 Tag-LLM 在多项任务中的有效性,包括八种语言的翻译、蛋白质特性预测和药物发现等科学工作。实验还证明了 Tag-LLM 方法可以有效地将 LLM 重新用于专业领域。例如,在多语言翻译任务中,使用领域标签表示不同的语言,并训练一个共享的函数标签 ⟨Translate⟩ 来编码翻译能力。实验结果验证了领域标签可以从数据中有效地提取领域信息,以及函数标签可以推广到未见过的领域和翻译对。值得注意的是,在制药领域的任务中,如药物组合预测和结合亲和力预测,Tag-LLM 取得了领先的结果,明显优于专用模型和其他重新利用 LLM 的方法。

Tag-LLM 采用模块化设计和系统化的训练协议,不仅提高了专项任务的性能,还提供了一个可扩展的框架,可以逐步添加新的标签。这种功能确保了 Tag-LLM 能够根据领域发展或面临新挑战时进行相应调整和扩展,具有实际落地应用价值。

总之,实验结果表明,Tag-LLM 方法在各种任务上的表现优于其他基线方法,证明了其有效性和实用性。


三、总结

Tag-LLM 可能是一个针对特定领域专业化 / {/} /微调大语言模型的好方法。

在这里插入图片描述

在这项工作中,研究者利用现有的 LLMs 来解决特定任务。开发了一个 LLM 标签系统,用于调节 LLM,并提出了一个学习标签的三阶段训练协议。实验结果表明,Tag-LLM 提高了 LLM 的预测质量,并允许对其行为进行更细粒度的控制。作者设想开源不同模型的学习标签可以帮助促进专业领域的研究。

基于 Tag-LLM 确定了几个未来发展方向。例如,在其他专业领域进一步验证 Tag-LLM,如基因功能预测(计算生物学)或求解偏微分方程(物理学)。用特定任务的输出头来增强函数标签的想法可以应用于各种预测问题。不过,在这项研究中,Tag-LLM 主要关注回归问题,而对分类和其他结构化预测问题的探索则留待今后研究。在计算效率方面,一个潜在的改进方法是大批量地训练标签,例如,将不同领域的数据串联在一起,而不是像论文里这样按顺序训练。最后,将 Tag-LLM 与其他领域适应范式(如上下文学习)相结合,也是一种值得探索的可能性。


📚️ 参考链接:

  • Tag-LLM: Repurposing General-Purpose LLMs for Specialized Domains
  • 沈向洋:致 AI 时代的我们 —— 请不要忽视写作的魅力

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/256557.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu Desktop - scrolling (Terminal 缓存更多终端历史输出内容)

Ubuntu Desktop - scrolling [Terminal 缓存更多终端历史输出内容] 1. ubuntu-14.04.5-desktop-amd64.iso2. ubuntu-16.04.3-desktop-amd64.isoReferences Terminal -> 右键 Profiles -> Profile Preferences 1. ubuntu-14.04.5-desktop-amd64.iso 2. ubuntu-16.04.3-de…

理解JAVA命名和目录接口(JNDI)

理解JAVA命名和目录接口(JNDI) 考虑访问网站的场景,Web用户要求记住四字节的IP地址而不是有意义的名称。例如,假设Web用户用123.23.3.123而不是hotmail.com访问hotmail网站。在这种情形下,Web用户难以记住不同的IP地址来访问不同的网站。因此,要使其变得对Web用户简单方…

【开源】SpringBoot框架开发APK检测管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 开放平台模块2.3 软件档案模块2.4 软件检测模块2.5 软件举报模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 开放平台表3.2.2 软件档案表3.2.3 软件检测表3.2.4 软件举报表 四、系统展示五、核心代…

基于RBF神经网络的自适应控制器simulink建模与仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 4.1自适应控制器 4.2 RBF神经网络模型 5.完整程序 1.程序功能描述 在simulink中,使用S函数编写基于RBF神经网络的自适应控制器,然后实现基于RBF神经网络的自适应控制…

HCIA-HarmonyOS设备开发认证V2.0-3.2.轻量系统内核基础-任务管理

目录 一、任务管理1.1、任务状态1.2、任务基本概念1.3、任务管理使用说明1.4、任务开发流程1.5、任务管理接口 坚持就有收获 一、任务管理 从系统角度看,任务是竞争系统资源的最小运行单元。任务可以使用或等待CPU、使用内存空间等系统资源,并独立于其它…

【多模态】27、Vary | 通过扩充图像词汇来提升多模态模型在细粒度感知任务(OCR等)上的效果

文章目录 一、背景二、方法2.1 生成 new vision vocabulary2.1.1 new vocabulary network2.1.2 Data engine in the generating phrase2.1.3 输入的格式 2.2 扩大 vision vocabulary2.2.1 Vary-base 的结构2.2.2 Data engine2.2.3 对话格式 三、效果3.1 数据集3.2 图像细粒度感…

双场板功率GaN HEMT电容模型以精确模拟开关行为

标题:Capacitance Modeling in Dual Field-Plate Power GaN HEMT for Accurate Switching Behavior(TED.16年) 摘要 本文提出了一种基于表面电位的紧凑模型,用于模拟具有栅极和源极场板(FP)结构的AlGaN/G…

【Python网络编程之Ping命令的实现】

🚀 作者 :“码上有前” 🚀 文章简介 :Python开发技术 🚀 欢迎小伙伴们 点赞👍、收藏⭐、留言💬 Python网络编程之Ping命令的实现 代码见资源,效果图如下一、实验要求二、协议原理2…

redis-sentinel(哨兵模式)

目录 1、哨兵简介:Redis Sentinel 2、作用 3、工作模式 4、主观下线和客观下线 5、配置哨兵模式 希望能够帮助到大家!!! 1、哨兵简介:Redis Sentinel Sentinel(哨兵)是用于监控redis集群中Master状态的工具,其已经被集成在re…

问山海——天涯海角——桃花渊boss攻击顺序

文章目录 桃花渊代码代码解读代码执行结果攻击顺序示意图 桃花渊 规划击杀各个boss顺序。 副本持续时间为30分钟,每个地方的boss被打死后,需要一定时间才能重新刷新。 只考虑其中两种boss,龟将和龟龙。各有四个。 其中我从一个boss地点到…

CentOS 7.9安装Tesla M4驱动、CUDA和cuDNN

正文共:1333 字 21 图,预估阅读时间:2 分钟 上次我们在Windows上尝试用Tesla M4配置深度学习环境(TensorFlow识别GPU难道就这么难吗?还是我的GPU有问题?),但是失败了。考虑到Windows…

力扣_字符串6—最小覆盖字串

题目 给你一个字符串 s 、一个字符串 t 。返回 s 中涵盖 t 所有字符的最小子串。如果 s 中不存在涵盖 t 所有字符的子串,则返回空字符串 “” 。 示例 : 输入:s “ADOBECODEBANC”, t “ABC” 输出:“BANC” 解释:…

jvm几个常见面试题整理

1. Full GC触发机制有如下5种情况。 (1)调用System.gc()时,系统建议执行Full GC,但是不必然执行。(2)老年代空间不足。(3)方法区空间不足。(4)老年代的最大可用连续空间小于历次晋升到老年代对象的平均大小就会进行Full GC。(5)由Eden区、S0(From)区向S…

【GO语言卵细胞级别教程】05.项目创建和函数讲解

感谢!点点赞和评论呀!我将继续更新 目录: 感谢!点点赞和评论呀!我将继续更新0.创建项目1.函数的引入2.注意事项3.详细介绍3.1 形参介绍 4.导入包4.1 基本知识4.2 注意事项 5.init函数6.匿名函数 0.创建项目 创建目录 …

uv机器电机方向极性

爱普生主板设置X、Y 电机方向极性:请根据实际情况设置,开机初始化时如果电机运动方向反了则修改此极性。 理光主板设置X、Y 电机方向极性

神经网络(Nature Network)

最近接触目标检测较多,再此对最基本的神经网络知识进行补充,本博客适合想入门人工智能、其含有线性代数及高等数学基础的人群观看 1.构成 由输入层、隐藏层、输出层、激活函数、损失函数组成。 输入层:接收原始数据隐藏层:进行…

SpringCloud-Ribbon实现负载均衡

在微服务架构中,负载均衡是一项关键的技术,它可以确保各个服务节点间的负载分布均匀,提高整个系统的稳定性和性能。Spring Cloud 中的 Ribbon 就是一种负载均衡的解决方案,本文将深入探讨 Ribbon 的原理和在微服务中的应用。 一、…

python 基础知识点(蓝桥杯python科目个人复习计划38)

今日复习内容:DFS的剪枝 我理解的剪枝,和《运筹学》里面“分支定界法”的剪枝操作一样,不停按照题目所给条件分割,当所得目标函数的值已偏离最优解时,就将其减去。 例题1:数字王国之军训排队 题目描述&a…

阅读 - 搭建博客

搭建博客的几种方式 1. 使用在线的博客系统,如语雀、掘金、CSDN等。 优点:直接创建账号使用即可,简单方便,不需要维护 缺点:文章分散在各个平台,不易于管理 2. github pages hugo、hexo等静态博客系统…

CVE-2022-25578 漏洞复现

CVE-2022-25578 路由/admin/admin.php是后台,登录账号和密码默认是admin、tao,选择文件管理。 是否还记得文件上传中的.htaccess配置文件绕过发,在这个文件中加入一句AddType application/x-httpd-php .jpg,将所有jpg文件当作php…