ubuntu22.04@laptop OpenCV Get Started: 007_color_spaces

ubuntu22.04@laptop OpenCV Get Started: 007_color_spaces

  • 1. 源由
  • 2. 颜色空间
    • 2.1 RGB颜色空间
    • 2.2 LAB颜色空间
    • 2.3 YCrCb颜色空间
    • 2.4 HSV颜色空间
  • 3 代码工程结构
    • 3.1 C++应用Demo
    • 3.2 Python应用Demo
  • 4. 重点分析
    • 4.1 interactive_color_detect
    • 4.2 interactive_color_segment
    • 4.3 data_analysis
      • 4.3.1 黄色
      • 4.3.2 红色
      • 4.3.3 蓝色
      • 4.3.4 绿色
      • 4.3.5 橙色
  • 5. 总结
  • 6. 参考资料
  • 7. 补充

1. 源由

在本章中,将了解计算机视觉中使用的流行颜色空间,并将其用于基于颜色的分割。

  • 不同颜色空间定义
  • 基于颜色图像分割

记得曾经有人谈到,什么是科学? 或者说对于我们来说科学的定义是什么?

Science is a rigorous, systematic endeavor that builds and organizes knowledge in the form of testable explanations and predictions about the world.

这里话题稍微展开一些,因为,从工程技术的角度来说,个人感觉国内目前更多偏于浮躁,注重功利性。因为,目前工程技术在企业、社会上更多的认知是解决问题。

从个人的观点来看,其实科学的定义在wiki百科上讲的非常清楚,换言之,讲的是逻辑和道理。

  • 知识体系
  • 可解释
  • 可预测

因为企业的逐利性,社会的导向性,过于表面的注重解决实际应用问题,而忽略了逻辑和道理。导致很多表现上只要解决问题,就觉得好了,成功了。而真正的本质没有讲清楚或者深入研究清楚,进而无法将科学更好的应用于生产力。

通常也是大家可以看到,很多人似乎能解决问题,但是无法用言语表达清楚,甚至用纸笔记录下来,因为这些问题的解决是一种表象,内部实质问题没有了解清楚。

我可能多说了很多“废话”,希望国内这种浮躁的科学技术作风能有所改善!

2. 颜色空间

颜色空间可以简单的理解为色彩在不同坐标系下的展开方式。

正交坐标系统,通常理解为不同单位向量之间是解耦的关系。对于非正交系统来说,单位向量有松耦合,甚至紧耦合的关系。而颜色在不同坐标系统下的展开也会影响到对于特征的判断。

在计算机视觉里面也有类似的问题,这是一个物理到计算机语言的表达过程。这里就凸显基础学科的重要性,通过定义,基本原理和逻辑来给出解决方案。当然应用方面,“拿来主义”也能出色的完成工作,但是背后的逻辑思路,以及遇到复杂问题的分析能力将会在后续的研发、研究上阻碍技术的发展。

希望通过这些点滴思考,能够对于当下社会浮躁研发氛围有所触发和讨论。当然,总的方向是好的,只不过。。。。

大体上计算机视觉上有以下颜色空间:

  • RGB颜色空间
  • LAB颜色空间
  • YCrCb颜色空间
  • HSV颜色空间

2.1 RGB颜色空间

定义:

A linear combination of Red, Green, and Blue values.
The three channels are correlated by the amount of light hitting the surface.

下面是同一个物体在不同光照条件下的对比分析:

在这里插入图片描述

  • 显著的感知不一致性
  • 色度(颜色相关信息)和亮度(强度相关信息)数据的混合

换句话说:其坐标系是非解耦的,有相关性;当亮度变化的时候,RGB都会发生变化。

默认读入的文件数据就是BGR格式:

C++:

//C++
bright = cv::imread('cube1.jpg')
dark = cv::imread('cube8.jpg')

Python:

#python
bright = cv2.imread('cube1.jpg')
dark = cv2.imread('cube8.jpg')

2.2 LAB颜色空间

定义:

L – Lightness ( Intensity ).
a – color component ranging from Green to Magenta.
b – color component ranging from Blue to Yellow.

下面是同一个物体在不同光照条件下的对比分析:
在这里插入图片描述

  • 感知均匀的颜色空间,近似于我们感知颜色的方式
  • 独立于设备(捕捉或显示)
  • 在Adobe Photoshop中广泛使用
  • 通过一个复杂的变换方程与RGB颜色空间相关的。

BGR转换:
C++:

//C++
cv::cvtColor(bright, brightLAB, cv::COLOR_BGR2LAB);
cv::cvtColor(dark, darkLAB, cv::COLOR_BGR2LAB);

Python:

#python
brightLAB = cv2.cvtColor(bright, cv2.COLOR_BGR2LAB)
darkLAB = cv2.cvtColor(dark, cv2.COLOR_BGR2LAB)

2.3 YCrCb颜色空间

定义:

Y – Luminance or Luma component obtained from RGB after gamma correction.
Cr = R – Y ( how far is the red component from Luma ).
Cb = B – Y ( how far is the blue component from Luma ).

下面是同一个物体在不同光照条件下的对比分析:
在这里插入图片描述

  • 亮度与LAB类似的
  • 与LAB相比,即使在室外图像中,红色和橙色之间的感知差异也较小
  • 白色的所有三个组成部分都发生了变化

BGR转换:
C++:

//C++
cv::cvtColor(bright, brightYCB, cv::COLOR_BGR2YCrCb);
cv::cvtColor(dark, darkYCB, cv::COLOR_BGR2YCrCb);

Python:

#python
brightYCB = cv2.cvtColor(bright, cv2.COLOR_BGR2YCrCb)
darkYCB = cv2.cvtColor(dark, cv2.COLOR_BGR2YCrCb)

2.4 HSV颜色空间

定义:

H – Hue ( Dominant Wavelength ).
S – Saturation ( Purity / shades of the color ).
V – Value ( Intensity ).

下面是同一个物体在不同光照条件下的对比分析:
在这里插入图片描述

  • H分量在两个图像中都非常相似,这表明即使在照明变化的情况下颜色信息也是完整的
  • S分量在两幅图像中也非常相似
  • V分量捕捉落在其上的光量,因此它会因照明变化而变化
  • 室外和室内图像的红色部分的值之间存在巨大差异。这是因为色调表示为一个圆形,而红色处于起始角度。因此,它可以取介于[300360]和[0,60]之间的值

BGR转换:
C++:

//C++
cv::cvtColor(bright, brightHSV, cv::COLOR_BGR2HSV);
cv::cvtColor(dark, darkHSV, cv::COLOR_BGR2HSV);

Python:

#python
brightHSV = cv2.cvtColor(bright, cv2.COLOR_BGR2HSV)
darkHSV = cv2.cvtColor(dark, cv2.COLOR_BGR2HSV)

3 代码工程结构

3.1 C++应用Demo

C++应用Demo工程结构:

007_color_spaces/CPP$ tree . -L 1
.
├── CMakeLists.txt
├── interactive_color_detect.cpp
├── interactive_color_segment.cpp
├── images
└── pieces2 directories, 3 files

C++示例编译前,确认OpenCV安装路径:

$ find /home/daniel/ -name "OpenCVConfig.cmake"
/home/daniel/OpenCV/installation/opencv-4.9.0/lib/cmake/opencv4/
/home/daniel/OpenCV/opencv/build/OpenCVConfig.cmake
/home/daniel/OpenCV/opencv/build/unix-install/OpenCVConfig.cmake$ export OpenCV_DIR=/home/daniel/OpenCV/installation/opencv-4.9.0/lib/cmake/opencv4/

C++应用Demo工程编译执行:

$ mkdir build
$ cd build
$ cmake ..
$ cmake --build . --config Release
$ cd ..
$ ./build/interactive_color_detect
$ ./build/interactive_color_segment

3.2 Python应用Demo

Python应用Demo工程结构:

007_color_spaces/Python$ tree . -L 1
.
├── data_analysis.py
├── interactive_color_detect.py
├── interactive_color_segment.py
├── images
└── pieces2 directories, 3 files

Python应用Demo工程执行:

$ sudo apt-get install tcl-dev tk-dev python-tk python3-tk
$ workoncv-4.9.0
$ pip install PyQt5 PySide2
$ python interactive_color_detect.py
$ python interactive_color_segment.py
$ python data_analysis.py

4. 重点分析

4.1 interactive_color_detect

  • cvtColor(src, dst, code)

获取图像数据中一个点的色彩坐标数据:

C++:

Vec3b bgrPixel(img.at<Vec3b>(y, x));Mat3b hsv,ycb,lab;
// Create Mat object from vector since cvtColor accepts a Mat object
Mat3b bgr (bgrPixel);//Convert the single pixel BGR Mat to other formats
cvtColor(bgr, ycb, COLOR_BGR2YCrCb);
cvtColor(bgr, hsv, COLOR_BGR2HSV);
cvtColor(bgr, lab, COLOR_BGR2Lab);//Get back the vector from Mat
Vec3b hsvPixel(hsv.at<Vec3b>(0,0));
Vec3b ycbPixel(ycb.at<Vec3b>(0,0));
Vec3b labPixel(lab.at<Vec3b>(0,0));

Python:

# get the value of pixel from the location of mouse in (x,y)
bgr = img[y,x]# Convert the BGR pixel into other colro formats
ycb = cv2.cvtColor(np.uint8([[bgr]]),cv2.COLOR_BGR2YCrCb)[0][0]
lab = cv2.cvtColor(np.uint8([[bgr]]),cv2.COLOR_BGR2Lab)[0][0]
hsv = cv2.cvtColor(np.uint8([[bgr]]),cv2.COLOR_BGR2HSV)[0][0]

4.2 interactive_color_segment

  • inRange(src, lowerb, upperb, dst )
  • bitwise_and(src1, src2, dst, mask)

使用mask过滤图像数据:

C++:

// Get values from the BGR trackbar
BMin = getTrackbarPos("BMin", "SelectBGR");
GMin = getTrackbarPos("GMin", "SelectBGR");
RMin = getTrackbarPos("RMin", "SelectBGR");BMax = getTrackbarPos("BMax", "SelectBGR");
GMax = getTrackbarPos("GMax", "SelectBGR");
RMax = getTrackbarPos("RMax", "SelectBGR");minBGR = Scalar(BMin, GMin, RMin);
maxBGR = Scalar(BMax, GMax, RMax);// Get values from the HSV trackbar
HMin = getTrackbarPos("HMin", "SelectHSV");
SMin = getTrackbarPos("SMin", "SelectHSV");
VMin = getTrackbarPos("VMin", "SelectHSV");HMax = getTrackbarPos("HMax", "SelectHSV");
SMax = getTrackbarPos("SMax", "SelectHSV");
VMax = getTrackbarPos("VMax", "SelectHSV");minHSV = Scalar(HMin, SMin, VMin);
maxHSV = Scalar(HMax, SMax, VMax);// Get values from the LAB trackbar
LMin = getTrackbarPos("LMin", "SelectLAB");
aMin = getTrackbarPos("AMin", "SelectLAB");
bMin = getTrackbarPos("BMin", "SelectLAB");LMax = getTrackbarPos("LMax", "SelectLAB");
aMax = getTrackbarPos("AMax", "SelectLAB");
bMax = getTrackbarPos("BMax", "SelectLAB");minLab = Scalar(LMin, aMin, bMin);
maxLab = Scalar(LMax, aMax, bMax);// Get values from the YCrCb trackbar
YMin = getTrackbarPos("YMin", "SelectYCB");
CrMin = getTrackbarPos("CrMin", "SelectYCB");
CbMin = getTrackbarPos("CbMin", "SelectYCB");YMax = getTrackbarPos("YMax", "SelectYCB");
CrMax = getTrackbarPos("CrMax", "SelectYCB");
CbMax = getTrackbarPos("CbMax", "SelectYCB");minYCrCb = Scalar(YMin, CrMin, CbMin);
maxYCrCb = Scalar(YMax, CrMax, CbMax);// Convert the BGR image to other color spaces
original.copyTo(imageBGR);
cvtColor(original, imageHSV, COLOR_BGR2HSV);
cvtColor(original, imageYCrCb, COLOR_BGR2YCrCb);
cvtColor(original, imageLab, COLOR_BGR2Lab);// Create the mask using the min and max values obtained from trackbar and apply bitwise and operation to get the results
inRange(imageBGR, minBGR, maxBGR, maskBGR);
resultBGR = Mat::zeros(original.rows, original.cols, CV_8UC3);
bitwise_and(original, original, resultBGR, maskBGR);inRange(imageHSV, minHSV, maxHSV, maskHSV);
resultHSV = Mat::zeros(original.rows, original.cols, CV_8UC3);
bitwise_and(original, original, resultHSV, maskHSV);inRange(imageYCrCb, minYCrCb, maxYCrCb, maskYCrCb);
resultYCrCb = Mat::zeros(original.rows, original.cols, CV_8UC3);
bitwise_and(original, original, resultYCrCb, maskYCrCb);inRange(imageLab, minLab, maxLab, maskLab);
resultLab = Mat::zeros(original.rows, original.cols, CV_8UC3);
bitwise_and(original, original, resultLab, maskLab);// Show the results
imshow("SelectBGR", resultBGR);
imshow("SelectYCB", resultYCrCb);
imshow("SelectLAB", resultLab);
imshow("SelectHSV", resultHSV);

Python:

# Get values from the BGR trackbar
BMin = cv2.getTrackbarPos('BGRBMin','SelectBGR')
GMin = cv2.getTrackbarPos('BGRGMin','SelectBGR')
RMin = cv2.getTrackbarPos('BGRRMin','SelectBGR')
BMax = cv2.getTrackbarPos('BGRBMax','SelectBGR')
GMax = cv2.getTrackbarPos('BGRGMax','SelectBGR')
RMax = cv2.getTrackbarPos('BGRRMax','SelectBGR')
minBGR = np.array([BMin, GMin, RMin])
maxBGR = np.array([BMax, GMax, RMax])# Get values from the HSV trackbar
HMin = cv2.getTrackbarPos('HMin','SelectHSV')
SMin = cv2.getTrackbarPos('SMin','SelectHSV')
VMin = cv2.getTrackbarPos('VMin','SelectHSV')
HMax = cv2.getTrackbarPos('HMax','SelectHSV')
SMax = cv2.getTrackbarPos('SMax','SelectHSV')
VMax = cv2.getTrackbarPos('VMax','SelectHSV')
minHSV = np.array([HMin, SMin, VMin])
maxHSV = np.array([HMax, SMax, VMax])# Get values from the LAB trackbar
LMin = cv2.getTrackbarPos('LABLMin','SelectLAB')
AMin = cv2.getTrackbarPos('LABAMin','SelectLAB')
BMin = cv2.getTrackbarPos('LABBMin','SelectLAB')
LMax = cv2.getTrackbarPos('LABLMax','SelectLAB')
AMax = cv2.getTrackbarPos('LABAMax','SelectLAB')
BMax = cv2.getTrackbarPos('LABBMax','SelectLAB')
minLAB = np.array([LMin, AMin, BMin])
maxLAB = np.array([LMax, AMax, BMax])# Get values from the YCrCb trackbar
YMin = cv2.getTrackbarPos('YMin','SelectYCB')
CrMin = cv2.getTrackbarPos('CrMin','SelectYCB')
CbMin = cv2.getTrackbarPos('CbMin','SelectYCB')
YMax = cv2.getTrackbarPos('YMax','SelectYCB')
CrMax = cv2.getTrackbarPos('CrMax','SelectYCB')
CbMax = cv2.getTrackbarPos('CbMax','SelectYCB')
minYCB = np.array([YMin, CrMin, CbMin])
maxYCB = np.array([YMax, CrMax, CbMax])# Convert the BGR image to other color spaces
imageBGR = np.copy(original)
imageHSV = cv2.cvtColor(original,cv2.COLOR_BGR2HSV)
imageYCB = cv2.cvtColor(original,cv2.COLOR_BGR2YCrCb)
imageLAB = cv2.cvtColor(original,cv2.COLOR_BGR2LAB)# Create the mask using the min and max values obtained from trackbar and apply bitwise and operation to get the results         
maskBGR = cv2.inRange(imageBGR,minBGR,maxBGR)
resultBGR = cv2.bitwise_and(original, original, mask = maskBGR)         maskHSV = cv2.inRange(imageHSV,minHSV,maxHSV)
resultHSV = cv2.bitwise_and(original, original, mask = maskHSV)maskYCB = cv2.inRange(imageYCB,minYCB,maxYCB)
resultYCB = cv2.bitwise_and(original, original, mask = maskYCB)         maskLAB = cv2.inRange(imageLAB,minLAB,maxLAB)
resultLAB = cv2.bitwise_and(original, original, mask = maskLAB)         # Show the results
cv2.imshow('SelectBGR',resultBGR)
cv2.imshow('SelectYCB',resultYCB)
cv2.imshow('SelectLAB',resultLAB)
cv2.imshow('SelectHSV',resultHSV)

4.3 data_analysis

在4.2章节中,已经通过一个范围来对图像进行过滤,通过示例,可以看出RGB来进行过滤,在亮度发生变化的时候,其分类的效果非常差,简直不可用。

从实际情况来看,期望在颜色分量上,能够存在一个稳定的区间来进行过滤或判别。

本章节采用颜色空间色坐标上的数值来看图像的一致性(可辨性)。

  • RGB空间:GB,RB,GR
  • HSV空间:SH
  • YCrCb空间:CbCr
  • LAB空间:BA

由图可以看出,总体上LAB颜色空间的线性比例关系是最好,最易于用来进行颜色判别的。

详见代码:data_analysis.py

4.3.1 黄色

黄色

4.3.2 红色

红色

4.3.3 蓝色

蓝色

4.3.4 绿色

绿色

4.3.5 橙色

在这里插入图片描述

5. 总结

经过上面实验和讨论,可以比较清晰的看出,在颜色空间做颜色分类的时候,亮度(光照)对于RGB色坐标的影响是比较大的。

在计算机视觉应用这块,当遇到颜色分类的时候,可以使用LAB颜色空间,基于该AB坐标与亮度非耦合的特性来做分割应用会更加合适。

6. 参考资料

【1】ubuntu22.04@laptop OpenCV Get Started
【2】ubuntu22.04@laptop OpenCV安装
【3】ubuntu22.04@laptop OpenCV定制化安装

7. 补充

学习是一种过程,这里关于《ubuntu22.04@laptop OpenCV Get Started》的记录也是过程。因此,很多重复的代码或者注释,就不会展开讨论,甚至提及。

有兴趣了解更多的朋友,请从[《ubuntu22.04@laptop OpenCV Get Started》](ubuntu22.04@laptop OpenCV Get Started)开始,一个章节一个章节的了解,循序渐进。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/256703.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

服务治理中间件-Eureka

目录 简介 搭建Eureka服务 注册服务到Eureka 简介 Eureka是Spring团队开发的服务治理中间件&#xff0c;可以轻松在项目中&#xff0c;实现服务的注册与发现&#xff0c;相比于阿里巴巴的Nacos、Apache基金会的Zookeeper&#xff0c;更加契合Spring项目&#xff0c;缺点就是…

Github 2024-02-13 开源项目日报 Top9

根据Github Trendings的统计&#xff0c;今日(2024-02-13统计)共有9个项目上榜。根据开发语言中项目的数量&#xff0c;汇总情况如下&#xff1a; 开发语言项目数量JavaScript项目2Python项目2C项目2TypeScript项目2Rust项目1Go项目1Dart项目1Java项目1C项目1 系统设计指南 …

MySQL数据库⑧_索引(概念+理解+操作)

目录 1. 索引的概念和价值 1.1 索引的概念 1.2 索引的价值 2. 磁盘的概念 2.1 磁盘的结构 2.2 操作系统与磁盘交互的基本单位 2.3 MySQL与磁盘交互的基本单位 3. 索引的理解 3.1 主键索引现象和推导 3.2 索引采用的数据结构&#xff1a;B树 3.3 聚簇索引和非聚簇索引…

docker 2:安装

docker 2&#xff1a;安装 ‍ ubuntu 安装 docker sudo apt install docker.io‍ 把当前用户放进 docker 用户组&#xff0c;避免每次运行 docker 命都要使用 sudo​ 或者 root​ 权限。 sudo usermod -aG docker $USER​id $USER ​看到用户已加入 docker 组 ​​ ‍ …

react【五】redux/reduxToolkit/手写connext

文章目录 1、回顾纯函数2、redux2.1 redux的基本使用2.2 通过action修改store的数值2.3 订阅state的变化2.4 目录结构2.5 Redux的使用过程2.6 redux的三大原则2.7 Redux官方图 3、redux在React中的使用4、react-redux使用4.1 react-redux的基本使用4.2 异步请求 redux-thunk4.3…

2.13学习总结

1.出差&#xff08;Bleeman—ford&#xff09;&#xff08;spfa&#xff09; &#xff08;dijkstra&#xff09; 2.最小生成树&#xff08;prim&#xff09;&#xff08;Kruskal&#xff09; 最短路问题&#xff1a; 出差https://www.luogu.com.cn/problem/P8802 题目描述 AA …

操作系统(16)----磁盘相关

目录 一.磁盘相关概念 1.磁盘 2.磁道 3.扇区 4.盘面、柱面 5.磁盘的分类 二.磁盘调度算法 1.一次磁盘读/写操作需要的时间 2.先来先服务算法(FCFS) 3.最短寻找时间优先(SSTF) 4.扫描算法(SCAN) 5.LOOK调度算法 6.循环扫描算法(C-SCAN) 7.C-LOOK调度算法 三.减少…

【Linux】Kali Linux 系统安装详细教程(虚拟机)

目录 1.1 Kali linux简介 1.2 Kali Linux工具 1.3 VMware workstation和ESXi的区别 二、安装步骤 一、Kali概述 1.1 Kali linux简介 Kali Linux是基于Debian的Linux发行版&#xff0c; 设计用于数字取证操作系统。每一季度更新一次。由Offensive Security Ltd维护和资助。最…

用HTML5 + JavaScript绘制花、树

用HTML5 JavaScript绘制花、树 <canvas>是一个可以使用脚本 (通常为JavaScript) 来绘制图形的 HTML 元素。 <canvas> 标签/元素只是图形容器&#xff0c;必须使用脚本来绘制图形。 HTML5 canvas 图形标签基础https://blog.csdn.net/cnds123/article/details/112…

(C++)集合数据文件存储工具

前言 一个简单的实现简便 "map集合" 数据存储本地。 适合不会SQL但又想实现数据存储本地的同学。 操作使用都非常简单。 文件只做了简单的加密处理&#xff0c;如果需要复杂加密的同学可以修改加密函数。 项目结构 1.创建头文件——CAB.h // // Created by xw o…

云原生介绍与容器的基本概念

云原生介绍 1、云原生的定义 云原生为用户指定了一条低心智负担的、敏捷的、能够以可扩展、可复制的方式最大化地利用云的能力、发挥云的价值的最佳路径。 2、云原生思想两个理论 第一个理论基础是&#xff1a;不可变基础设施。 第二个理论基础是&#xff1a;云应用编排理…

python算法之 Dijkstra 算法

文章目录 基本思想&#xff1a;步骤&#xff1a;复杂度&#xff1a;注意事项&#xff1a;代码实现K 站中转内最便宜的航班 Dijkstra 算法是一种用于解决单源最短路径问题的经典算法。该问题的目标是找到从图中的一个固定顶点&#xff08;称为源点&#xff09;到图中所有其他顶点…

[1-docker-01]centos环境安装docker

官方参考文档 可以在官方docker桌面版本指导文档里找到适合自己的电脑平台进行参考&#xff0c;或者你是老司机的话直接自己上车。 如果不需要桌面版&#xff0c;也可以在官方docker engine版本指导文档里找到适合自己的平台进行参考&#xff0c;同样&#xff0c;老司机可以自…

npm config set registry https://registry.npm.taobao.org 这个设置了默认的镜像源之后如何恢复默认的镜像源

要恢复npm默认的镜像源&#xff0c;你可以使用以下命令将registry设置回npm的官方源&#xff1a; npm config set registry https://registry.npmjs.org/这个命令会修改你的全局npm配置&#xff0c;将包的下载源改回npm官方的源。这样做之后&#xff0c;任何后续的npm install…

C++ bfs再探迷宫游戏(五十五)【第二篇】

今天我们用bfs解决迷宫游戏。 1.再探迷宫游戏 前面我们已经接触过了迷宫游戏&#xff0c;并且学会了如何使用 DFS 来解决迷宫最短路问题。用 DFS 求解迷宫最短路有一个很大的缺点&#xff0c;需要枚举所有可能的路径&#xff0c;读入的地图一旦很大&#xff0c;可能的搜索方案…

安全之护网(HVV)、红蓝对抗

文章目录 红蓝对抗什么是护网行动&#xff1f;护网分类护网的时间 什么是红蓝对抗红蓝对抗演练的目的什么是企业红蓝对抗红蓝对抗价值参考 红蓝对抗 什么是护网行动&#xff1f; 护网的定义是以国家组织组织事业单位、国企单位、名企单位等开展攻防两方的网络安全演习。进攻方…

Vue--》深入学习Tailwind CSS掌握优雅而高效的前端样式开发

Tailwind CSS是一个非常强大且灵活的CSS框架&#xff0c;适用于开发者希望高度定制化界面样式的项目。今天博主就 Tailwind CSS 做一个简单介绍以及案例讲解&#xff0c;争取读者阅读文章后入门。 仅靠一篇文章博主也不可能将Tailwind CSS所有内容讲解的面面俱到&#xff0c;在…

购物|电商购物小程序|基于微信小程序的购物系统设计与实现(源码+数据库+文档)

电商购物小程序目录 目录 基于微信小程序的购物系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、用户前台功能实现 2、管理员后台功能实现 四、数据库设计 1、实体ER图 2、具体的表设计如下所示&#xff1a; 五、核心代码 六、论文参考 七、最新计算机毕设…

【力扣】5.最长回文子串

这道题我主要是通过动态规划来进行解题&#xff0c;看了我好久&#xff08;解析&#xff09;&#xff0c;生疏了呀。 首先就是判断一个字符串是不是回文&#xff0c;我们可以设置两个指针&#xff0c;从前往后进行判断即可&#xff0c;运用暴力解题法&#xff0c;这里运用的动…

react【四】css

文章目录 1、css1.1 react和vue css的对比1.2 内联样式1.3 普通的css1.4 css modules1.5 在react中使用less1.6 CSS in JS1.6.1 模板字符串的基本使用1.6.2 styled-components的基本使用1.6.3 接受传参1.6.4 使用变量1.6.5 继承样式 避免代码冗余1.6.6 设置主题色 1.7 React中添…