Linux_文件系统

假定外部存储设备为磁盘,文件如果没有被使用,那么它静静躺在磁盘上,如果它被使用,则文件将被加载进内存中。故此,可以将文件分为内存文件和磁盘文件。

  • 内存文件
  • 磁盘文件
  • 软、硬链接

一.内存文件

1.1 c语言的文件接口
  • fopen:FILE *fopen(const char *path, const char *mode);
    • mode:
      • r :读方式
      • w:写,打开即清空文件
      • a:追加方式
  • fclose:int fclose(FILE *fp);
  • fwrite:size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);
  • fgets:char *fgets(char *s, int size, FILE *stream);
  • fputs:int fputs(const char *s, FILE *stream);
  • snprintf:int snprintf(char *str, size_t size, const char *format, …);

在这里插入图片描述

1.2 系统接口

1.2.1 open

image.png

  • 返回值:返回一个文件描述符(下文讨论)
  • pathname:指定文件路径
  • flags:位图,可以用宏来指定打开方式
    • O_RDONLY:读方式
    • O_WRONLY: 写方式
    • O_CREAT: 不存在则创建
    • O_TRUNC: 打开后会清空文件
    • O_APPEND:追加方式打开,不清空文件
  • mode :指定创建文件时的起始权限
// 1.读时的open写法
int fd = open("log.txt", O_RDONLY);// 2.清空写时的open写法
int fd1 = open("log.txt", O_WRONLY | O_CREAT | O_TRUNC);//3.追加写时的open写法
int fd2 = open("log.txt", O_WRONLY | O_CREAT | O_APPEND);

当一个进程要打开文件时,操作系统将文件的属性加载到内存中,根据这些属性创建一个struct file结构体,并且将该结构体与进程控制块task_struct建立联系。

1.2.2 close

image.png

  • fd : 文件描述符,open返回值。
1.2.3 write

image.png

  • count:写入字节数
1.2.4 readimage.png

image.png

1.3 文件描述符-file descriptor

操作系统将文件加载进内存,创建对应的struct file 结构体,并且与struct task_struct建立联系。在Linux中,task_struct 内部有一个 struct files_struct 字段,这个结构体里面有struct file* fd_array[]数组,file descriptor就是这个数组的下标。如图:
image.png

1.3.2 文件描述符本质

文件描述符的本质就是struct file*fd_array 数组中的下标,当操作系统创建文件结构体struct file时,将该结构体地址填入数组中,至此进程与文件建立了联系。

  • 操作系统从开始扫描数组,遇到空位置,则填入地址,给调用进程返回数组下标,即文件描述符。

    image.png
    观察上面代码,发现文件描述符是从3开始的,这是因为c语言中默认打开三个文件,标准输入-stdin,标准输出-stdout,标准错误-stderr,它们对应数组的 0 1 2,stdout和stderr默认都指向显示器。
    image.png

1.4 struct file 与 struct FILE

struct file是内核级别的结构体,而struct FILE是c语言库中定义的结构体,这两者之间没有任何关系。
struct FILE内部有一个文件描述符int fd; 字段。当进程读写文件时,os会根据文件描述符找到对应的struct file结构体,然后进行读写操作。
image.png

1.5 重定向

重定向有三种:输出重定向,追加重定向,输入重定向

  • 输出重定向:我们可以在命令行中输入命令ls . > text,这样原本打印在显示器上的消息就打印到文本text中了,这叫做输出重定向。
  • 追加重定向:输出重定向会先清空文件,然后写入内容,追加重定向不清空文件,在文件末尾追加内容
  • 输入重定向:在命令行中输入cat < text,原本是从键盘读取字符,然后重定向到从text中读取字符 ,这就是输入重定向。

为什么ls . > text可以将打印到显示器上的数据打印到text中的呢?在Linux中,命令ls是一个程序,它也是用c语言编写的,所以是用printf来进行打印的,而printf默认会打印到stdout对应的文件中,stdout中的fd为1,如果我们将数组下标为1的元素内容从显示器改变为目标文件,那么这样就做到了将打印到显示器上的数据打印到text中。输入重定向也是同理,改变文件描述符的指向即可。即:重定向的原理就是改变数组元素的指向。这种改变是上层无法获知的,所以stdout依旧认为它对应的文件是显示器。
image.png

1.5.1 重定向的三种方式
  1. 命令行

./test > text 2>&1 : 将test的执行结果输出到text中,并且将1号文件描述符的内容靠别到2号文件描述符中,即,stderr也会输出到text中
./test 1>log 2>err :将标准输出改变为log,标准错误改变为err

  1. dup2(int oldfd, int newfd);
  • 例如dup2(3, 2); 将3号文件描述符的内容拷贝到2号文件描述符中
  1. 先关闭1号文件描述符,然后调用open
close(1);
int fd = open("log.txt", O_WRONLY|O_CREAT|_TRUNC);     // 1

1.6 内核级缓冲区和用户级缓冲区

c语言库中struct FILE结构体中有一个缓冲区,用来暂存数据,这个缓冲区叫做用户级缓冲区。内核结构体struct file 中有一个缓冲区,用来暂存数据,这个缓冲区叫做内核级缓冲区。缓冲区的目的是为了提高IO效率。
用户级缓冲区的刷新策略:‘

  1. 无缓冲
  2. 行缓冲(显示器) :遇到换行符将数据刷新到内核级缓冲区
  3. 全缓存(普通文件):当缓冲区满了才将数据刷新到内核级缓冲区

内核级缓冲区的刷新策略由os系统决定,当然我们可以调用fsync()强制刷新。

1.6.1 数据流动方式

当程序调用printf函数时,先将字符串拷贝到用户缓冲区,然后结合相关刷新策略,调用write函数将字符串从用户缓冲区拷贝到内核缓冲区,最后os结合刷新策略将数据刷新到外设中,这就是数据的流动方式。共经历三次拷贝。
image.png

1.6.2 代码示例-缓冲区
#include<stdio.h>
#include<unistd.h>
#include<fcntl.h>
#include<sys/types.h>
#include<sys/stat.h>
#include<string.h>int main()
{//  情况1printf("hello world!\n");//  情况2  printf("hello world!");const char* msg = "tieite\n"; write(1,msg, strlen(msg)), fork();return 0;
}
  1. 情况1:输出结果:image.png
  2. 情况2:输出结果:image.png

为什么会有这样奇怪的结果呢?这与缓冲区的刷新策略有关?因为printf默认输出到显示器,而显示器的刷新策略是行刷新,所以情况1正确执行。而情况2中,没有换行符,所以数据留在用户缓冲区中,没有刷新到内核缓冲区,等调用fork的时候,创建子进程,子进程又继承了父进程的代码和数据,故此就有了两份数据“hello world!”当父子进程退出时,都会刷新用户缓冲区,于是内核缓冲区中就有两份hello world。

二.磁盘文件

2.1 磁盘

磁盘是计算机主要的存储介质,可以存储大量的二进制数据,并且断电后也能保持数据不丢失。早期计算机使用的磁盘是软磁盘(Floppy Disk,简称软盘),如今常用的磁盘是硬磁盘([Hard disk](https://baike.baidu.com/item/Hard disk/2806058?fromModule=lemma_inlink),简称硬盘)。现在的pc大部分都用的是SSD固态硬盘(电)。

2.2 磁盘的物理结构

image.png

  • 磁盘中有许多盘片,每一个盘片都有两个盘面,盘面上有若干磁道,磁道由若干扇区组成,磁盘的基本存储单元是扇区(512字节),多个盘片同半径的所有磁道构成一个柱面

image.png

2.3 硬件寻址方法-CHS

确定一个扇区的方式:先定位在哪个盘面上(磁头head),然后在定义哪个柱面cylinder(磁道),最后根据扇区(sector)编号即可定位某一个扇区。这种寻址方法也叫做CHS定位法。

2.4 操作系统寻址方式-LBA

操作系统的寻址方式和硬件的寻址方式需要解耦合,所以操作系统需要有一套新的地址。os将盘面逻辑抽象成线性的(类似以前的那种磁带全部展开后)。
image.png
将这样的结构看作一个数组,每一个扇区占一个数组下标,这样就可以轻易的获取每个扇区的地址。但是操作系统一次IO的基本单位是块(4KB),所以将8个扇区看作一个块,然后重新抽象得到下图。下面这样的地址叫做LBA-逻辑块地址。磁盘也叫做块设备,以块为单位进行IO。
image.png

2.5 磁盘分区管理

我们电脑上只带有一块盘,但是为了更好的管理,所以将盘分为若干区,为了更好的管理一个区(区等同于c盘,d盘),又将区分为若干组。每个组内有许多字段。
image.png
Linux是将文件内容和属性分开存储的。

  • Boot Block:存储了OS系统镜像以及开机启动的一些程序。
  • Super Block(SB):存储了当前区的文件系统相关的属性,如文件系统名字,整个分区的情况,非常重要,损坏的话一个分区全部不能用,因此要在每个分组内做备份。Linux用的Ext系列的文件系统。
  • Group Descriptor Table(GDT):存储了整个分组的情况
  • Block Bitmap:位图结构,分别对应Data Blocks中的块是否可用
  • Inode Bitmap:位图结构,对应Inode Table中的Inode是否有效
  • Inode Table:存储文件属性。文件属性的集合叫做Inode节点,每一个Inode节点都有一个Inode编号(文件id)。struct Inode{ int inode_num ; int block[NUM];///....};
  • Data Blocks:存储文件内容,为了建立文件属性和内容的联系,故此每个Inode节点里面都有一个数组,指明哪个块是属于本文件,可用建立直接映射,二级映射,三级映射。

os查找文件:
ls -li :查看当前目录下所有文件的inode编号

  1. 先找到文件对应的Inode编号
  2. 在Inode Table中找到Inode节点
  3. 根据Inode节点获得其内容块的地址、

2.6 Inode节点
struct inode
{int inode_number;    //inode 编号int ref_count;       // 硬链接数int modes;           //权限size_t uid;size_t size;//....int databloacks[NUM];  //内容
};
  • inode里面并没有文件名,因为操作系统并不需要文件名来标识文件,而是通过inode_编号来标识文件的。文件名只是给用户看的。
  • 我们用touch命令的时候,是os先遍历访问InodeBitmap寻找空闲的Inode Table,创建Inode,然后在当前目录下用Inode编号和文件名建立一个映射关系。目录也是一个文件,目录里面存储的是文件名和Inode编号的映射关系
  • 增删查改文件都是先根据文件名找到Inode编号

三.软、硬链接

3.1 软链接

ln -s myfile myfile-soft

  • myfile-soft为myfile的链接文件,这个链接文件的内容为myfile的路径。
  • 软链接的作用:便于执行程序,类似于Windows中的桌面快捷方式

image.png

3.2 硬链接

ln myfile myfile-hard

  • 给myfile建立一个硬链接文件myfile-hard

image.png
功能:
Linux下,每一个目录下都有两个特殊目录. .. ,一个点代表当前路径,两个点代表上级路径,为什么呢?因为一个点是当前路径的硬链接,两个点是上级路径的硬链接。这两个特殊路径使得路径切换更加容易。

  • Linux下,不容许用户给目录建立硬链接,防止出现环路问题,而. .. 是操作系统可用识别的特殊路径。

image.png

3.3软硬链接的区别
  • 通过观察创建的文件inode编号,可用知道硬链接并没有新建inode节点,而是和myfile指向同一个节点
  • 软链接新建了一个文件,其有自己的inode节点和内容
  • 硬链接数:类似于引用计数,当值为0的时候,就会释放inode节点。

image.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/257719.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【web | CTF】BUUCTF [护网杯 2018] easy_tornado

天命&#xff1a;这题是框架性的漏洞&#xff0c;Python的web服务器框架&#xff0c;应该已经比较古老了 开局先看一下三个文件 简单阅读后会发现&#xff0c;这里存在文件包含漏洞&#xff0c;可以直接读取文件&#xff0c;但是有一个哈希值校验 一开始我以为是扫描文件后得到…

python 自我检测题--part 1

1. Which way among them is used to create an event loop ? Window.mainloop() 2. Suppose we have a set a {10,9,8,7}, and we execute a.remove(14) what will happen ? Key error is raised. The remove() method removes the specified element from the set. Th…

基于FPGA的ECG信号滤波与心率计算verilog实现,包含testbench

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 ECG信号的特点与噪声 4.2 FPGA在ECG信号处理中的应用 4.3 ECG信号滤波原理 4.4 心率计算原理 4.5 FPGA在ECG信号处理中的优势 5.算法完整程序工程 1.算法运行效果图预览 其RTL结构如…

安卓自定义画板

包含功能&#xff1a; 包含 获取当前画板的截图、设置画笔样式、获取画笔样式、设置画笔宽度、获取画笔宽度、设置画笔颜色、获取画笔颜色、加载图片、获取图片位图对象、设置图片位图对象&#xff0c;并在画布上绘制图片、撤销上一步操作、重做上一步撤销的操作、清空所有绘图…

[OPEN SQL] 修改数据

MODIFY语句用于修改数据库表中的数据 MODIFY拥有INSERT和UPDATE的操作&#xff0c;如果数据库表中不存在符合条件的数据则会添加该条新数据&#xff0c;反之数据库表中存在符合条件的数据则会更新该条数据 本次操作使用的数据库表为SCUSTOM&#xff0c;其字段内容如下所示 航…

[BIZ] - 1.金融交易系统特点

1. 典型数据汇总 数据 说明 新增数据量(条/天) Qps(条/s) 消息大小(Byte) 实时性 可丢失性 可恢复性 实时行情 1.使用场景&#xff1a;交易&#xff0c;报价&#xff0c;策略验证&#xff1b; 2.冷热分离&#xff1a;彭博行情/其他行情&#xff1b;黄金&期货行情/…

AI - 碰撞避免算法分析(ORCA)

对比VO/RVO ORCA算法检测碰撞的原理和VO/RVO基本一样的&#xff0c;只是碰撞区域的计算去掉了一定时间以外才可能发生的碰撞&#xff0c;因此碰撞区域的扇形去掉了前面的部分&#xff0c;由圆锥头变成了个圆 另一个最主要的区别是&#xff0c;求新的速度&#xff0c;是根据相…

数据可视化之维恩图 Venn diagram

文章目录 一、前言二、主要内容三、总结 &#x1f349; CSDN 叶庭云&#xff1a;https://yetingyun.blog.csdn.net/ 一、前言 维恩图&#xff08;Venn diagram&#xff09;&#xff0c;也叫文氏图或韦恩图&#xff0c;是一种关系型图表&#xff0c;用于显示元素集合之间的重叠区…

在线Windows鼠标主题转换器(ani动态鼠标改为Xcur)

文章目录 前言在哪访问如何使用惨淡的界面简单粗暴的使用方法目前的bug 前言 在这篇文章中&#xff0c;我使用一些方法把转换脚本包装成了在线服务&#xff0c;现在我将说明如何使用服务。 在哪访问 还是说明一下&#xff0c;访问链是这个&#xff1a;https://www.sakebow.c…

Github 2024-02-15 开源项目日报 Top9

根据Github Trendings的统计&#xff0c;今日(2024-02-15统计)共有9个项目上榜。根据开发语言中项目的数量&#xff0c;汇总情况如下&#xff1a; 开发语言项目数量TypeScript项目4Python项目2Solidity项目2Rust项目1JavaScript项目1Go项目1C项目1 Terraform: 以安全和可预测…

appears to be hung in Auto SQL Tuning task

appears to be hung in Auto SQL Tuning task Oracle 自动定时优化任务执行失败分析 错误现象&#xff1a; Sat Feb 10 03:10:57 2024 Process 0x0x00007FFB81BE44A8 appears to be hung in Auto SQL Tuning task Current time 1707505857, process death time 1707505803 …

CTFshow web(命令执行 41-44)

web41 <?php /* # -*- coding: utf-8 -*- # Author: 羽 # Date: 2020-09-05 20:31:22 # Last Modified by: h1xa # Last Modified time: 2020-09-05 22:40:07 # email: 1341963450qq.com # link: https://ctf.show */ if(isset($_POST[c])){ $c $_POST[c]; if(!p…

嵌入式培训机构四个月实训课程笔记(完整版)-Linux ARM驱动编程第四天-ARM Linux编程之IIC与uart (物联技术666)

链接&#xff1a;https://pan.baidu.com/s/1V0E9IHSoLbpiWJsncmFgdA?pwd1688 提取码&#xff1a;1688 教学内容&#xff1a; 1、I2C总线&#xff1a; I2C&#xff08;Inter&#xff0d;Integrated Circuit),PHILIPS公司开发的两线式半双工同步串行总线&#xff1b;可以用来连…

uni-app x,一个纯原生的Android App开发工具

uni-app x&#xff0c;下一代uni-app&#xff0c;一个神奇的产品。 用vue语法、uni的组件、api&#xff0c;以及uts语言&#xff0c;编译出了kotlin的app。不再使用js引擎和webview。纯纯的kotlin原生app。 uni-app x&#xff0c;让“跨平台开发性能不如原生”的这条曾广为流…

Uipath 实现Excel 文件合并

场景描述 某文件夹下有多个相同结构(标题列相同)的Excel 文件&#xff0c;需实现汇总到一个Excel文件。 常见场景有销售明细汇总&#xff0c;订单汇总等。 解决方案 对于非IT 人员则可使用Uipath 新式Excel活动&#xff0c;通过拖拉实现。也可以通过内存表或使用VB脚本&…

蓝桥杯:C++排列与组合

排列是暴力枚举时的常见操作。有以下两种情况。 C的 next_permutation()是全排列函数&#xff0c;只能输出序列中所有元素的全排列。 本节将给出手写排列和组合的代码。因为在很多场合中不能使用系统自带的排列函数&#xff0c;所以需要自己编写。 全排列函数&#xff1a;nex…

PHP+vue+mysql校园学生社团管理系统574cc

运行环境:phpstudy/wamp/xammp等 开发语言&#xff1a;php 后端框架&#xff1a;Thinkphp 前端框架&#xff1a;vue.js 服务器&#xff1a;apache 数据库&#xff1a;mysql 数据库工具&#xff1a;Navicat/phpmyadmin 前台功能&#xff1a; 首页&#xff1a;展示社团信息和活动…

黑马Java——集合进阶(不可变集合、Stream流、方法引用)

目录 一、不可变集合 1、创建不可变集合的应用场景 2、创建不可变集合的书写格式 2.1、不可变的List集合 2.2、不可变的Set集合 2.3、不可变的Map集合 3、小结 二、Stream流 1、体验Stream流的作用 2、Stream流的思想 3、Stream流的使用步骤 3.1、单列集合获取Strea…

Duilib List 控件学习

这是自带的一个示例; 一开始运行的时候List中是空的,点击Search按钮以后就填充列表框; 先看一下列表框列头是在xml文件中形成的; <List name="domainlist" bkcolor="#FFFFFFFF" ... menu="true"> <ListHeader height="24…

2048游戏C++板来啦!

个人主页&#xff1a;PingdiGuo_guo 收录专栏&#xff1a;C干货专栏 大家好呀&#xff0c;我是PingdiGuo_guo&#xff0c;今天我们来学习如何用C编写一个2048小游戏。 文章目录 1.2048的规则 2.步骤实现 2.1: 初始化游戏界面 2.1.1知识点 2.1.2: 创建游戏界面 2.2: 随机…