《Java 简易速速上手小册》第8章:Java 性能优化(2024 最新版)

在这里插入图片描述

文章目录

  • 8.1 性能评估工具 - 你的性能探测仪
    • 8.1.1 基础知识
    • 8.1.2 重点案例:使用 VisualVM 监控应用性能
    • 8.1.3 拓展案例 1:使用 JProfiler 分析内存泄漏
    • 8.1.4 拓展案例 2:使用 Gatling 进行 Web 应用压力测试
  • 8.2 JVM 调优 - 魔法引擎的调校
    • 8.2.1 基础知识
    • 8.2.2 重点案例:优化 Web 应用的 JVM 设置
    • 8.2.3 拓展案例 1:使用 Parallel GC 优化批处理应用
    • 8.2.4 拓展案例 2:减少 Full GC 的发生频率
  • 8.3 代码优化策略 - 编码的艺术
    • 8.3.1 基础知识
    • 8.3.2 重点案例:优化搜索算法
    • 8.3.3 拓展案例 1:循环优化
    • 8.3.4 拓展案例 2:利用并发提升数据处理效率

8.1 性能评估工具 - 你的性能探测仪

在Java应用的性能优化之旅中,首先需要做的就是准确地评估和定位现有性能问题。幸运的是,我们有一系列强大的工具可以帮助我们完成这个任务。

8.1.1 基础知识

  • VisualVM: 免费工具,提供了一套可视化界面来监控Java应用的CPU、内存使用情况,线程和堆信息等。它还可以对Java应用进行性能分析和内存分析。

  • JProfiler: 商业工具,提供了更深入的性能分析功能,包括实时的CPU、内存使用监控,内存泄漏侦测,数据库访问分析等。

  • Gatling: 专注于Web应用的性能测试工具,可以模拟高并发访问,并生成详细的性能报告。

8.1.2 重点案例:使用 VisualVM 监控应用性能

我们将展示如何使用VisualVM对Java应用进行基本的性能监控。

步骤:

  1. 下载并安装VisualVM。
  2. 启动你的Java应用。
  3. 打开VisualVM,从左侧进程列表中选择你的Java应用。
  4. 查看“监视器”和“分析器”标签页,以获取CPU和内存的使用情况,以及线程的信息。

示例代码(一个简单的Java程序,用于生成CPU和内存负载):

public class PerformanceLoadGenerator {public static void main(String[] args) {for (int i = 0; i < 100; i++) {new Thread(() -> {while (true) {Math.pow(Math.random(), Math.random());}}).start();}}
}

8.1.3 拓展案例 1:使用 JProfiler 分析内存泄漏

在这个案例中,我们会演示如何使用JProfiler来诊断和分析Java应用中的内存泄漏。

步骤:

  1. 启动JProfiler并连接到你的Java应用。
  2. 在“堆栈”标签页中,开始记录内存分配。
  3. 执行一系列操作来模拟用户行为。
  4. 停止记录,并查看“类视图”或“对象视图”找到可能的内存泄漏。

示例代码(一个可能存在内存泄漏的Java程序):

import java.util.ArrayList;
import java.util.List;public class MemoryLeakExample {private static final List<Double> list = new ArrayList<>();public static void main(String[] args) {while (true) {list.add(Math.random());}}
}

8.1.4 拓展案例 2:使用 Gatling 进行 Web 应用压力测试

最后,我们将演示如何使用Gatling工具对Web应用进行压力测试,以评估其在高并发情况下的性能。

步骤:

  1. 安装Gatling并创建一个测试脚本。
  2. 定义模拟的用户行为和请求参数。
  3. 运行Gatling测试。
  4. 分析测试报告,找出性能瓶颈。

示例Gatling脚本(模拟多用户访问Web应用):

import io.gatling.core.Predef._
import io.gatling.http.Predef._
import scala.concurrent.duration._class BasicSimulation extends Simulation {val httpProtocol = http.baseUrl("http://yourwebapp.com").acceptHeader("text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8").doNotTrackHeader("1")val scn = scenario("BasicSimulation").exec(http("request_1").get("/")).pause(5)setUp(scn.inject(atOnceUsers(100))).protocols(httpProtocol)
}

通过以上案例,你已经学会了如何使用VisualVM进行基本的性能监控,使用JProfiler分析内存泄漏,以及使用Gatling进行Web应用的压力测试。掌握这些工具将使你能够更加自信地面对性能优化的挑战。

在这里插入图片描述


8.2 JVM 调优 - 魔法引擎的调校

Java虚拟机(JVM)是Java应用运行的心脏,正确调优JVM可以显著提升应用性能,就像为你的魔法引擎进行精细调校一样,让它运行得更快、更高效。

8.2.1 基础知识

  • 堆内存设置:JVM堆内存是Java对象生存的地方。通过调整堆内存的大小(使用-Xms设置初始堆大小,-Xmx设置最大堆大小),可以优化垃圾收集性能,避免内存溢出。

  • 垃圾回收器选择:不同的垃圾回收器(GC)适用于不同的场景和应用需求。常见的垃圾回收器有Serial GC、Parallel GC、CMS、G1等。

  • JVM监控和诊断工具:使用JVM监控工具(如jstat、jmap、jstack)和诊断工具(如Java Mission Control)可以帮助识别性能瓶颈和内存泄漏。

8.2.2 重点案例:优化 Web 应用的 JVM 设置

假设你负责一个高流量的Java Web应用,此应用在高负载时出现了性能瓶颈。通过调优JVM设置,我们可以提高应用性能。

步骤:

  1. 识别性能瓶颈:使用JVM监控工具观察应用在高负载时的性能指标。
  2. 调整堆内存大小:根据应用的实际使用情况调整-Xms-Xmx参数,比如设置-Xms4g -Xmx4g,为JVM堆分配更多内存。
  3. 选择合适的垃圾回收器:对于需要低延迟的Web应用,可以考虑使用G1垃圾回收器,设置-XX:+UseG1GC

示例JVM启动参数

java -Xms4g -Xmx4g -XX:+UseG1GC -jar your-web-app.jar

8.2.3 拓展案例 1:使用 Parallel GC 优化批处理应用

对于一些后台运行的大数据处理或批处理应用,吞吐量是最重要的指标。Parallel GC是一个以达到高吞吐量为目标的垃圾回收器。

示例JVM启动参数

java -Xms8g -Xmx8g -XX:+UseParallelGC -jar your-batch-app.jar

通过设置-XX:+UseParallelGC,我们告诉JVM使用Parallel GC,这对于提高批处理任务的处理速度非常有效。

8.2.4 拓展案例 2:减少 Full GC 的发生频率

频繁的Full GC会严重影响应用的性能。通过调整新生代和老年代的大小,可以减少Full GC的发生频率。

示例JVM启动参数

java -Xms4g -Xmx4g -XX:NewRatio=3 -jar your-app.jar

这里-XX:NewRatio=3表示老年代与新生代的比例是3:1,给老年代分配更多的内存空间可以减少对象晋升到老年代的频率,从而减少Full GC的发生。

通过以上案例,你已经学会了如何针对不同类型的Java应用进行JVM调优,从而提升应用的性能。记住,JVM调优是一个反复试验和评估的过程,每个应用的最佳配置都是独一无二的。使用正确的工具和策略,你的Java应用将运行得更加流畅和高效。

在这里插入图片描述


8.3 代码优化策略 - 编码的艺术

代码优化是提升Java应用性能的基石。通过精简和优化代码,我们可以减少资源消耗,提高执行效率。下面是一些基本的代码优化策略,以及如何应用这些策略来提升你的Java应用性能。

8.3.1 基础知识

  • 算法优化:选择合适的算法对性能影响巨大。时间复杂度和空间复杂度是衡量算法性能的关键指标。
  • 循环优化:减少循环次数和循环内的计算量,避免在循环内进行不必要的操作。
  • 数据结构选择:根据数据的使用模式选择合适的数据结构,比如在频繁查找操作中使用HashMap而不是ArrayList
  • 避免重复计算:缓存计算结果以避免重复计算,特别是在计算成本高昂的情况下。
  • 利用并发编程:合理利用多线程或并发工具来分摊任务,提升执行效率。

8.3.2 重点案例:优化搜索算法

假设我们有一个任务,需要在一个大型数据集中频繁搜索特定元素。原始实现使用了ArrayList,我们将通过优化算法和数据结构来提升搜索性能。

原始实现:

import java.util.ArrayList;
import java.util.List;public class SearchExample {public static boolean search(List<Integer> data, int key) {for (int item : data) {if (item == key) {return true;}}return false;}public static void main(String[] args) {List<Integer> data = new ArrayList<>();// 假设data被初始化并填充了大量元素boolean found = search(data, 12345);System.out.println("Found: " + found);}
}

优化后的实现:

ArrayList替换为HashSet,提升搜索性能。

import java.util.HashSet;
import java.util.Set;public class OptimizedSearchExample {public static boolean search(Set<Integer> data, int key) {return data.contains(key);}public static void main(String[] args) {Set<Integer> data = new HashSet<>();// 假设data被初始化并填充了大量元素boolean found = search(data, 12345);System.out.println("Found: " + found);}
}

8.3.3 拓展案例 1:循环优化

对于一个处理大量数据的循环,优化其执行路径可以显著提升性能。

优化前:

for (int i = 0; i < data.size(); i++) {if (expensiveComputation(data.get(i))) {// 处理结果}
}

优化后:

将条件判断移出循环,减少循环内的计算量。

for (int i = 0; i < data.size(); i++) {preComputedResult = preCompute(data.get(i));if (preComputedResult) {// 处理结果}
}

8.3.4 拓展案例 2:利用并发提升数据处理效率

对于数据处理密集型任务,通过并行处理可以显著缩短总体执行时间。

示例代码:

使用Java 8的Stream API进行并行处理。

import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.IntStream;public class ParallelProcessingExample {public static void main(String[] args) {List<Integer> data = IntStream.rangeClosed(1, 1000000).boxed().collect(Collectors.toList());long startTime = System.currentTimeMillis();data.parallelStream().forEach(ParallelProcessingExample::expensiveOperation);long endTime = System.currentTimeMillis();System.out.println("Processing time: " + (endTime - startTime) + "ms");}public static void expensiveOperation(int item) {// 模拟一个耗时操作try {Thread.sleep(1);} catch (InterruptedException e) {Thread.currentThread().interrupt();}}
}

通过这些案例,我们看到了通过算法优化、循环优化和利用并发编程等策略,可以显著提升Java应用的性能。性能优化是一个持续的过程,始终需要我们在实践中不断地探索和学习。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/260253.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

图的遍历(广度优先遍历BFS,深度优先遍历DFS)

目录 图的遍历概念&#xff1a; 图的广度优先遍历&#xff08;BFS&#xff09;&#xff1a; 代码实现如下&#xff1a; 测试如下&#xff1a; 注意&#xff1a; 图的深度优先遍历&#xff08;DFS&#xff09;&#xff1a; 代码实现如下&#xff1a; 测试如下&#xff1…

SSL证书怎么申请最合适

SSL证书对于网络安全的作用毋庸置疑&#xff0c;作为数字证书的一种&#xff0c;皆是由权威数字证书机构验证网站身份后进行颁发&#xff0c;可以实现浏览器和网站服务器数据加密传输。而网站安装部署SSL证书后会在浏览器页面显示安全锁标志&#xff0c;而后数据传输协议则从ht…

Swift Combine 使用 print 操作符调试管道 从入门到精通二十四

Combine 系列 Swift Combine 从入门到精通一Swift Combine 发布者订阅者操作者 从入门到精通二Swift Combine 管道 从入门到精通三Swift Combine 发布者publisher的生命周期 从入门到精通四Swift Combine 操作符operations和Subjects发布者的生命周期 从入门到精通五Swift Com…

【数据结构】每天五分钟,快速入门数据结构(一)——数组

目录 一.初始化语法 二.特点 三.数组中的元素默认值 四.时间复杂度 五.Java中的ArrayList类 可变长度数组 1 使用 2 注意事项 3 实现原理 4 ArrayList源码 5 ArrayList方法 一.初始化语法 // 数组动态初始化&#xff08;先定义数组&#xff0c;指定数组长度&#xf…

【C#】使用代码实现龙年春晚扑克牌魔术(守岁共此时),代码实现篇

欢迎来到《小5讲堂》 大家好&#xff0c;我是全栈小5。 这是《C#》系列文章&#xff0c;每篇文章将以博主理解的角度展开讲解&#xff0c; 特别是针对知识点的概念进行叙说&#xff0c;大部分文章将会对这些概念进行实际例子验证&#xff0c;以此达到加深对知识点的理解和掌握。…

DS:栈和队列的相互实现

创作不易&#xff0c;感谢友友们三连&#xff01;&#xff01; 一、前言 栈和队列的相互实现是用两个栈去实现队列或者是用两个队列去实现栈&#xff0c;这样其实是把问题复杂化的&#xff0c;实际中没有什么应用价值&#xff0c;但是通过他们的相互实现可以让我们更加深入地理…

PyTorch使用Tricks:Dropout,R-Dropout和Multi-Sample Dropout等 !!

文章目录 1、为什么使用Dropout&#xff1f; 2、Dropout的拓展1&#xff1a;R-Dropout 3、Dropout的拓展2&#xff1a;Multi-Sample Dropout 4、Dropout的拓展3&#xff1a;DropConnect 5、Dropout的拓展4&#xff1a;Standout 6、Dropout的拓展5&#xff1a;Gaussian Dropout …

Jest和Mocha对比:两者之间有哪些区别?

什么是单元测试&#xff1f; 所谓单元测试&#xff0c;是对软件中单个功能组件进行测试的一种软件测试方式&#xff0c;其目的是确保代码中的每一个基本单元都能正常运行。因此&#xff0c;开发人员在应用程序开发的整个过程&#xff08;即代码编写过程&#xff09;中都需要进行…

Avalonia学习(二十四)-系统界面

目前项目式练习&#xff0c;界面内容偏多&#xff0c;所以不给大家贴代码了&#xff0c;可以留言交流。此次为大家展示的是物联项目的例子&#xff0c;仅仅是学习&#xff0c;我把一些重点列举一下。 界面无边框 以前的样例主要是通过实现控件来完成的&#xff0c;前面已经有窗…

美团外卖商超药店商品销量

外卖药店商品月销量 外卖商超商品月销量

学习总结19

# 奶牛的耳语 ## 题目描述 在你的养牛场&#xff0c;所有的奶牛都养在一排呈直线的牛栏中。一共有 n 头奶牛&#xff0c;其中第 i 头牛在直线上所处的位置可以用一个整数坐标 pi(0< pi < 10^8) 来表示。在无聊的日子里&#xff0c;奶牛们常常在自己的牛栏里与其它奶牛交…

术业有专攻!三防加固平板助力工业起飞

在日常使用中的商业电脑比较追求时效性&#xff0c;以市场定位做标准&#xff0c;内部元件只需满足一般要求就行&#xff0c;使用寿命比较短。而三防平板电脑是主要运用在复杂、恶劣的环境下所以在需求方面较高,需要保证产品在恶劣条件下正常使用&#xff0c;满足行业领域的需求…

Jakarta Bean Validation

Validation 官网 https://beanvalidation.org/ 常见注解 Bean Validation中定义的注解&#xff1a; 注解详细信息Null被注释的元素必须为 nullNotNull被注释的元素必须不为 nullAssertTrue被注释的元素必须为 trueAssertFalse被注释的元素必须为 falseMin(value)被注释的元素…

【linux】体系结构和os管理

冯诺依曼体系结构 输入单元&#xff1a;包括键盘, 鼠标&#xff0c;扫描仪, 写板等 中央处理器(CPU)&#xff1a;含有运算器和控制器等 输出单元&#xff1a;显示器&#xff0c;打印机等 这里的存储器指的是内存 三者是相互连接的&#xff0c;设备之间会进行数据的来回拷贝&am…

【springboot+vue项目(十五)】基于Oauth2的SSO单点登录(二)vue-element-admin框架改造整合Oauth2.0

Vue-element-admin 是一个基于 Vue.js 和 Element UI 的后台管理系统框架&#xff0c;提供了丰富的组件和功能&#xff0c;可以帮助开发者快速搭建现代化的后台管理系统。 一、基本知识 &#xff08;一&#xff09;Vue-element-admin 的主要文件和目录 vue-element-admin/ |…

人工智能_普通服务器CPU_安装清华开源人工智能AI大模型ChatGlm-6B_001---人工智能工作笔记0096

使用centos安装,注意安装之前,保证系统可以联网,然后执行yum update 先去更新一下系统,可以省掉很多麻烦 20240219_150031 这里我们使用centos系统吧,使用习惯了. ChatGlm首先需要一台个人计算机,或者服务器, 要的算力,训练最多,微调次之,推理需要算力最少 其实很多都支持C…

stable diffusion webui学习总结(2):技巧汇总

一、脸部修复&#xff1a;解决在低分辨率下&#xff0c;脸部生成异常的问题 勾选ADetailer&#xff0c;会在生成图片后&#xff0c;用更高的分辨率&#xff0c;对于脸部重新生成一遍 二、高清放大&#xff1a;低分辨率照片提升到高分辨率&#xff0c;并丰富内容细节 1、先通过…

【LeetCode】树的BFS(层序遍历)精选6题

目录 1. N 叉树的层序遍历&#xff08;中等&#xff09; 2. 二叉树的锯齿形层序遍历&#xff08;中等&#xff09; 3. 二叉树的最大宽度&#xff08;中等&#xff09; 4. 在每个树行中找最大值&#xff08;中等&#xff09; 5. 找树左下角的值&#xff08;中等&#xff09…

票务系统平台架构设计与实现

票务系统是一个复杂的平台&#xff0c;涉及到用户购票、票务管理、支付结算等多方面功能。本文将介绍票务系统平台的架构设计原则、技术选型以及实现过程&#xff0c;帮助读者了解如何构建一个高效、稳定的票务系统。 正文&#xff1a; 1. 系统设计原则 在设计票务系统平台时…

【计算机网络】网络基础

初识网络 一、网络发展二、认识协议三、认识网络协议1. 协议分层2. OSI 七层模型3. TCP/IP五层模型4. OS和网络协议栈 四、网络传输基本流程1. TCP/IP 协议通讯过程2. 以太网通信&#xff08;1&#xff09;以太网通信原理&#xff08;2&#xff09;数据碰撞 3. 数据跨网络传输 …