利用R语言进行典型相关分析实战

🍉CSDN小墨&晓末:https://blog.csdn.net/jd1813346972

   个人介绍: 研一|统计学|干货分享
         擅长Python、Matlab、R等主流编程软件
         累计十余项国家级比赛奖项,参与研究经费10w、40w级横向

文章目录

  • 1 目的
  • 2 数据背景
  • 3 建模分析
    • 3.1 数据读取
    • 3.2 相关矩阵散点图
    • 3.3 典型相关分析
    • 3.4 对结果进行经济意义分析

1 目的

  根据固定资产投资的资金来源、理论框架以及我国现有数据资料,对各类投资资金与三大产业进行典型相关分析。

2 数据背景

  数据是根据《中国统计年鉴2007》中31个省、市、自治区相关数据汇总整理得出。选取以下五个指标作为第一组变量来衡量投资资金的变化:

  • x 1 x_1 x1:国家预算内资金;

  • x 2 x_2 x2:国内贷款;

  • x 3 x_3 x3:利用外资;

  • x 4 x_4 x4:自筹资金;

  • x 5 x_5 x5:其它资金来源。

  可以选择下面三个指标作为第二组变量来反映各产业生产总值的变量:

  • y 1 y_1 y1:国家预算内资金;

  • y 2 y_2 y2:国内贷款;

  • y 3 y_3 y3:利用外资。

  详细的数据如表 1所示。

表1 2006 年全国各地区各类投资资金与三大产业增加值的统计表

3 建模分析

3.1 数据读取

  运行程序:

rm(list=ls()) #清空变量 
library("openxlsx") #加载包 
library("knitr") #加载包 
library("xlsx") #加载包 
source('G:/msaR.R') #引用 msaR.R 自编函数 
data<-read.xlsx("G:\\2006 年全国各地区各类投资资金与三大产业增加值的统计表 1.
xlsx",'Sheet1',encoding = "UTF-8") #读取 excel 数据 
head(data) #显示数据前六行

  运行结果:

## 地区 x1 x2 x3 x4 x5 y1 y2 y3 
## 1 北京 105.40 1316.3 76.18 1523 1825.4 98.04 2191 5581 
## 2 天津 22.79 527.8 152.98 1182 397.3 118.23 2488 1753 
## 3 河北 98.79 638.0 76.96 4247 600.3 1606.48 6115 3939 
## 4 山西 81.81 474.0 29.22 1504 263.9 276.77 2748 1727 
## 5 内蒙古 149.21 400.9 21.83 2514 207.3 649.62 2327 1814 
## 6 辽宁 271.52 742.5 132.42 4185 695.6 976.37 4730 3545 

3.2 相关矩阵散点图

  运行程序:

data1<-data.frame(scale(data[,2:9])) #标准化系数 
data2<-data.frame(round(cor(data1),3)) #标准化数据后相关系数矩阵 
data2 #相关系数矩阵 
## x1 x2 x3 x4 x5 y1 y2 y3 
## x1 1.000 0.110 -0.090 0.243 0.044 0.373 0.108 0.078 
## x2 0.110 1.000 0.786 0.735 0.965 0.478 0.825 0.933 
## x3 -0.090 0.786 1.000 0.735 0.785 0.485 0.901 0.888 
## x4 0.243 0.735 0.735 1.000 0.690 0.811 0.926 0.803 
## x5 0.044 0.965 0.785 0.690 1.000 0.439 0.796 0.938 
## y1 0.373 0.478 0.485 0.811 0.439 1.000 0.733 0.595 
## y2 0.108 0.825 0.901 0.926 0.796 0.733 1.000 0.927 
## y3 0.078 0.933 0.888 0.803 0.938 0.595 0.927 1.000 
library(PerformanceAnalytics)#加载包 
chart.Correlation(data1[c(1:31),c(1:8)], histogram=TRUE, pch=19) 
#相关系数矩阵散点图 
1. data<-read.csv("G:\\某乐队 CD 盘销售情况.csv") #数据读取 
2. names(data) <- c("周次","y","x1","x2") #列命名 
3. fm=lm(y~x1+x2,data=data) #最小二乘回归 
4. summary(fm) #结果

  运行结果:

Call: 
lm(formula = data$y ~ data$x1 + data$x2, data = data) Residuals: Min 1Q Median 3Q Max 
-747.71 -229.80 -2.14 267.23 547.68 Coefficients: Estimate Std. Error t value Pr(>|t|) 
(Intercept) -574.0550 349.2701 -1.644 0.1067 
x1 191.1001 73.3090 2.607 0.0121 * 
x2 2.0451 0.9107 2.246 0.0293 * 
--- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 329.7 on 49 degrees of freedom 
Multiple R-squared: 0.2928, Adjusted R-squared: 0.264 
F-statistic: 10.15 on 2 and 49 DF, p-value: 0.0002057 

  结果见图1所示。

图1 相关系数矩阵散点图

  由相关系数矩阵和相关系数矩阵图可以看出, y 1 、 y 2 、 y 3 y_1、y_2、y_3 y1y2y3分别与 x 4 、 x 4 、 x 5 x_4、x_4、x_5 x4x4x5的相关系数最大。表明我国第一产业和第二产业增加值与与我国 自筹资金相关度最高,第三产业增加值与我国其它资金来源相关度最 高,相关系数分别达到 0.81、0.93、0.94。

3.3 典型相关分析

  运行程序:

msa.cancor(data1[,1:5],data1[6:8],plot = T) 

  运行结果:

图2 第一对典型变量得分平面等值图
## $cor 
## CR Q P 
## 1 0.9838 145.635 0.0000 
## 2 0.9202 55.728 0.0000 
## 3 0.5733 9.364 0.0248 
## 
## $xcoef 
## x1 x2 x3 x4 x5 
## u1 0.0012 0.0196 0.0810 0.0684 0.0312 
## u2 -0.0063 -0.0151 0.0294 0.2190 -0.2388 
## u3 0.0947 -0.1909 -0.2126 0.1112 0.2986 
## 
## $ycoef 
## y1 y2 y3 
## v1 -0.0142 0.1318 0.0636 
## v2 0.0582 0.3900 -0.4360 
## v3 0.2779 -0.4495 0.2687 

  经检验在 0.05 的显著性水平上,有三组典型相关是显著的,即需 要三组典型变量,根据运行结果可得出前三对典型变量的线性组合为:
{ u 1 = 0.0012 x 1 + 0.0196 x 2 + 0.0810 x 3 + 0.0684 x 4 + 0.0312 x 5 v 1 = − 0.0142 y 1 + 0.1318 y 2 + 0.0636 y 3 \begin{cases}u_1=0.0012x_1+0.0196x_2+0.0810x_3+0.0684x_4+0.0312x_5 \\ v_1=-0.0142y_1+0.1318y_2+0.0636y_3\end{cases} {u1=0.0012x1+0.0196x2+0.0810x3+0.0684x4+0.0312x5v1=0.0142y1+0.1318y2+0.0636y3

{ u 2 = − 0.0063 x 1 − 0.0151 x 2 + 0.0294 x 3 + 0.2190 x 4 − 0.2388 x 5 v 2 = − 0.0582 y 1 + 0.39008 y 2 − 0.4360 y 3 \begin{cases}u_2=-0.0063x_1-0.0151x_2+0.0294x_3+0.2190x_4-0.2388x_5 \\v_2=-0.0582y_1+0.39008y_2-0.4360y_3\end{cases} {u2=0.0063x10.0151x2+0.0294x3+0.2190x40.2388x5v2=0.0582y1+0.39008y20.4360y3

{ u 3 = 0.0947 x 1 − 0.1909 x 2 − 0.0294 x 3 + 0.1112 x 4 + 0.2986 x 5 v 3 = 0.2779 y 1 − 0.4495 y 2 + 0.2687 y 3 \begin{cases}u_3=0.0947x_1-0.1909x_2-0.0294x_3+0.1112x_4+0.2986x_5 \\v_3=0.2779y_1-0.4495y_2+0.2687y_3\end{cases} {u3=0.0947x10.1909x20.0294x3+0.1112x4+0.2986x5v3=0.2779y10.4495y2+0.2687y3

3.4 对结果进行经济意义分析

  (1)由运行结果显示:CR1=0.9838,说明 u 1 u_1 u1 v 1 v_1 v1 之间存在高度相 关关系,且各自的变量组合中的系数大多为正号,因此一般来说,各 类投资资金越多,我国各产业生产总值增加值越多。

  (2)在第一对典型变量 u 1 u_1 u1 v 1 v_1 v1 中, u 1 u_1 u1 为 2006 年全国各类投资资金 的线性组合,其中 x 3 x_3 x3 (利用外资)、 x 4 x_4 x4 (自筹资金)较其它变量有较大 载荷,说明外资和自筹资金在投资资金中占主导地位; v 1 v_1 v1是三大产业增 加值的线性组合,其中 y 2 y_2 y2 (第二产业增加值)的载荷相对较大,说明 x 3 x_3 x3 (利用外资)、 x 4 x_4 x4 (自筹资金)与 y 2 y_2 y2 (第二产业增加值)有较为密切 的关系,以外资和自筹资金为代表的投资类别对经济的促进作用主要 体现在第二产业的增长上,即要保持第二产业的快速增长,那么外资 和自筹资金必须有充足的供应。

   (3)在第二对典型变量中,在投资类别指标的线性组合中, x 4 x_4 x4 (自筹资金)、 x 5 x_5 x5 (其它资金来源)较其它变量系数有较大载荷,说 明自筹资金和其它资金来源是投资的主要指标它们在投资中占主导地 位;而在生产总值指标中,以 y 3 y_3 y3 (第三产业增加值)的载荷最大,说明第三产业的增加值与自筹资金、其它资金来源有着密切关系,其中自筹资金的增长对第三产业的发展有着抑制作用,相反,其它资金的 投资增加对第三产业的发展有着积极作用。

  (4)在第三对典型变量中, x 3 x_3 x3(利用外资)、 $x_5 (其它资金来源) 在投资类别指标中相对其它变量占较大载荷,说明外资和其它资金来 源占主导地位;在生产总值指标中第二产业的载荷最大,说明第二产业 与以外资和其它资金来源作为投资形式的关系有着密切关系,再次说 明了外资的增加对第二产业的发展有着积极作用,但其它来源的资金 对于第二产业的发展有着较为明显的抑制效果。

   (5)从上面三对典型变量中可以看出,在投资形式上,外资、自 筹资金及其它来源资金的投资形式占据主导地位,在此投资模式下, 对第二产业发展动向往往有着较为明显的关系。其中外资形式的投资 方式与第二产业有着同向变动关系,其它来源的投资形式与第三产业 有着同向变动关系,结合实际情况来说,“十五”期间,我国对外贸 易持续快速发展,“科技兴贸”、“以质取胜”和“走出去”战略取 得新的进展。对外贸易结构逐步改善、质量效益逐步提高,为第二产 业创造了大量就业机会,极大的促进了第二产业的发展。

  (6)将原始数据代入第一对典型变量中,得到典型变量第一对典 型变量 u 1 u_1 u1 v 1 v_1 v1 的得分平面等值图(如图 2 所示),从图 2 可以看出,散 点近似的分布在一条直线上,两者呈线性相关关系,说明用典型相关 分析的方法能较好地说明投资于产业增长之间的相关关系。散点图上 几乎没有离异点,这表明投资量与产业增长量之间的关系很稳定,波 动也非常平稳。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/263268.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringMVC 学习(三)之 @RequestMapping 注解

目录 1 RequestMapping 注解介绍 2 RequestMapping 注解的位置 3 RequestMapping 注解的 value 属性 4 RequestMapping 注解的 method 属性 5 RequestMapping 注解的 params 属性&#xff08;了解&#xff09; 6 RequestMapping 注解的 headers 属性&#xff08;了解&…

Opencv中的RNG-随机绘图

在OpenCV中&#xff0c;RNG是一个随机数生成器类&#xff0c;用于生成各种类型的随机数&#xff0c;包括均匀分布或高斯分布的整数和浮点数。RNG类的实例化时可以接受一个无符号整数作为种子值&#xff0c;这个种子值决定了随机数生成序列的起点&#xff0c;相同的种子值将产生…

应用回归分析:非参数回归

非参数回归是一种统计方法&#xff0c;它在建模和分析数据时不假设固定的模型形式。与传统的参数回归模型不同&#xff0c;如线性回归和多项式回归&#xff0c;非参数回归不需要预先定义模型的结构&#xff08;例如&#xff0c;模型是否为线性或多项式&#xff09;。这使得非参…

ASP.NET-实现图形验证码

ASP.NET 实现图形验证码能够增强网站安全性&#xff0c;防止机器人攻击。通过生成随机验证码并将其绘制成图像&#xff0c;用户在输入验证码时增加了人机交互的难度。本文介绍了如何使用 C# 和 ASP.NET 创建一个简单而有效的图形验证码系统&#xff0c;包括生成随机验证码、绘制…

Stable Diffusion 绘画入门教程(webui)-ControlNet(Tile/Blur)

上篇文章介绍了y语义分割Seg&#xff0c;这篇文章介绍下Tile/Blur&#xff08;增加/减少细节&#xff09; Tile用于增加图片细节&#xff0c;一般用于高清修复&#xff0c;Blur用于减少图片细节&#xff08;图片模糊&#xff09;&#xff0c;如下图&#xff0c;用Tile做修复&a…

C语言-数组指针与指针数组

一、简介 对于使用C语言开发的人来说&#xff0c;指针&#xff0c;大家都是非常熟悉的。数组&#xff0c;大家也同样熟悉。但是这两个组合到一起的话&#xff0c;很多人就开始蒙圈了。这篇文章&#xff0c;就详细的介绍一下这两个概念。 指针数组和数组指针&#xff0c;听起来非…

c语言经典测试题1

1.题1 int x5,y7; void swap() { int z; zx; xy; yz; } int main() { int x3,y8; swap(); printf("%d,%d\n"&#xff0c;x, y); return 0; } A: 5,7 B: 7,5 C: 3,8 D: 8,3 大家思考一下选哪一个呢&#xff1f; 我们来分析一下&#xff1a;上述代码中我们创建了4…

sql注入 [极客大挑战 2019]FinalSQL1

打开题目 点击1到5号的结果 1号 2号 3号 4号 5号 这里直接令传入的id6 传入id1^1^1 逻辑符号|会被检测到&#xff0c;而&感觉成了注释符&#xff0c;&之后的内容都被替换掉了。 传入id1|1 直接盲注比较慢&#xff0c;还需要利用二分法来编写脚本 这里利用到大佬的脚…

QT Widget自定义菜单

此文以设置QListWidget的自定义菜单为例&#xff0c;其他继承于QWidget的类也都可以按类似的方法去实现。 1、ui文件设置contextMenuPolicy属性为CustomContextMenu 2、添加槽函数 /*** brief onCustomContextMenuRequested 右键弹出菜单* param pos 右键的坐标*/void onCusto…

Mac OS 下载安装与破解Typora

文章目录 下载Typora破解Typora1. 进入安装目录2. 找到并打开Lincense文件3. 修改激活状态4. 重新打开Typora 下载Typora 官网地址&#xff1a;typora官网 下载最新Mac版&#xff0c;正常安装即可 破解Typora 打开typora,可以看到由于未激活&#xff0c;提示使用期限还剩下15…

day11-项目集成SpringSecurity-今日指数

项目集成SpringSecurity 学习目标 理解自定义认证和授权过滤器流程&#xff1b;理解项目集成SprignSecurity流程&#xff1b; 第一章 自定义认证授权过滤器 1、SpringSecurity内置认证流程 通过研究SpringSecurity内置基于form表单认证的UsernamePasswordAuthenticationFi…

代码随想录刷题第41天

首先是01背包的基础理论&#xff0c;背包问题&#xff0c;即如何在有限数量的货物中选取使具有一定容量的背包中所装货物价值最大。使用动规五步曲进行分析&#xff0c;使用二维数组do[i][j]表示下标从0到i货物装在容量为j背包中的最大价值&#xff0c;dp[i][j]可由不放物品i&a…

图片Base64编码解码的优缺点及应用场景分析

title: 图片Base64编码解码的优缺点及应用场景分析 date: 2024/2/24 14:24:37 updated: 2024/2/24 14:24:37 tags: 图片Base64编码解码HTTP请求优化网页性能加载速度安全性缓存机制 随着互联网的迅猛发展&#xff0c;图片在网页和移动应用中的使用越来越广泛。而图片的传输和加…

halcon中的一维测量

一维测量 像点到点的距离&#xff0c;边缘对的距离等沿着一维方向的测量都属于1D测量范畴。Halocn的一维测量首先构建矩形或者扇形的ROI测量对象&#xff0c;然后在ROI内画出等距离的、长度与ROI宽度一致的、垂直于ROI的轮廓线&#xff08;profile line&#xff09;的等距线。…

抖音数据挖掘软件|视频内容提取

针对用户获取抖音视频的需求&#xff0c;我们开发了一款功能强大的工具&#xff0c;旨在解决用户在获取抖音视频时需要逐个复制链接、下载的繁琐问题。我们希望用户能够通过简单的关键词搜索&#xff0c;实现自动批量抓取视频&#xff0c;并根据需要进行选择性批量下载。因此&a…

从ChatGPT到Sora,来了解大模型训练中的存储

1 从chatGPT到Sora 2022年底&#xff0c;OpenAI推出人工智能聊天机器人ChatGPT&#xff0c;开启了大模型领域的“竞速跑”模式。2024年2月15日&#xff0c;随着视频生成模型Sora的横空出世&#xff0c;OpenAI再度掀起热潮。 Sora将视频生成内容拉到了一个全新的高度&#xff0c…

Socket、UDP、TCP协议和简单实现基于UDP的客户端服务端

目录 Socket TCP和UDP区别 UDP&#xff1a;无连接&#xff0c;不可靠传输&#xff0c;面向数据报&#xff0c;全双工 TCP&#xff1a;有连接&#xff0c;可靠传输&#xff0c;面向字节流&#xff0c;全双工 无连接和有连接 可靠传输和不可靠传输 面向数据报和面向字节流…

Visual Studio:Entity设置表之间的关联关系

1、选择表并右键-》新增-》关联 2、设置关联的表及关联关系并“确定”即可

RabbitMQ入门指南

文章目录 RabbitMQ 的作用为什么使用RabbitMQ数据隔离work模式交换机如何声明队列和交换机消息转换器生产者重连生产者确认MQ持久化消费者的可靠性1. 消费者确认机制2. 消费失败问题3. 业务幂等性 如何保证消息不丢失消息重复消费问题RabbitMQ中死信交换机&#xff1f;延迟队列…

基于qt的图书管理系统----03核心界面设计

参考b站&#xff1a;视频连接 源码github&#xff1a;github 目录 1 添加软件图标2 打包程序3 三个管理界面设计4 代码编写4.1 加载界面4.2 点击按钮切换界面4.3 组团添加样式4.4 搭建表头4.5 表格相关操作 从别人那里下载的项目会有这个文件&#xff0c;里边是别人配置的路径…