文章目录
- Graph Theory(图论)
- Graphs: Useful Concepts(图:有用的概念)
- Walks and connectedness(走法和连通性)
Graph Theory(图论)
Definition 5.1. Intuitively, a graph is just a way of modeling a collection of objects and the connections between them.
直观地说,图只是为对象集合及其之间的连接建模的一种方式。
Definition 5.2. A simple undirected loopless graph G consists of
two things: a collection V of vertices, and another collection E of
edges, which we think of as distinct unordered pairs of distinct elements
in V . We think of the vertices in a graph as the objects we’re studying, and the edges in a graph as a way to describe how those objects are
connected.
To describe an edge connecting a pair of vertices a, b in our graph G, we
use our set language from earlier and write this as {a, b}. We say that
a and b are the endpoints of the edge {a, b} when this happens.
一个简单的无向无环图G由两部分组成:顶点的集合V,和边的集合E,我们认为它们是V中不同元素的不同的无序对。我们把图中的顶点看作是我们正在研究的对象,而图中的边则是描述这些对象之间如何连接的一种方式。
为了描述图G中连接顶点对a, b的一条边,我们使用之前的集合语言,将其写成{a, b}。我们说a和b是边{a, b}的端点。
例如:
根据以上的定义我们可以画出几种符合要求的图:
Definition 5.3. A simple graph with loops is just like a simple graph
G, except we no longer require the pairs of elements in E to be distinct;
that is, we can have things like {v, v} ∈ E.
A multigraph is a simple graph, except we allow ourselves to repeat
edges in E multiple times; i.e. we could have three distinct edges e1, e2, e3 ∈
E with each equal to the same pair {x, y}.
A directed graph is a simple graph, except we think of our edges as
ordered pairs: i.e. we have things like x → y ∈ E, not {x, y}.
You can mix-and-match these definitions: you can have a directed graph
with loops, or a multigraph with loops but not directions, or pretty much
anything else you’d want!
带有循环的简单图
就像简单图G一样,只是我们不再要求E中的元素对是不同的;也就是说,我们可以有{v, v}∈E。
多重图
是一个简单的图,除了我们允许我们自己多次重复E中的边;也就是说,我们有三条不同的边e1 e2 e3∈E和每一个都等于相同的一对{x, y}。
一个有向图
是一个简单的图,除了我们认为我们的边是有序对:例如,我们有x→y∈E,而不是{x, y}。
您可以混合使用这些定义:您可以使用带有循环的有向图,或者使用带有循环但没有方向的多重图,或者几乎任何您想要的东西!
我们可以看几个示例图片:
接下来列举出一些较为特殊的图:
Definition 5.4. The complete graph on n vertices Kn is defined for
any positive integer n as follows: take n vertices. Now, take every possible pair of distinct vertices, and connect them with an edge! We draw
several examples at right.
In this sense, a complete graph is a graph in which we have as manyedges as is possible for a graph on n vertices.
对于任意正整数n, n个顶点上的完整图Kn定义如下:取n个顶点。现在,取每一对可能的不同顶点,并将它们与一条边连接起来!
从这个意义上说,一个完整图
是这样一个图,它有尽可能多的边对于一个有n个顶点的图来说。
例如:
Definition 5.6. The cycle graph on n vertices Cn is defined for any
integer n ≥ 3 as follows: take n vertices, and label them 1, 2, . . . n. Now,draw edges {1, 2},{2, 3}, . . . until you get to the last edge {n− 1, n}; thenconnect this up into a closed cycle by drawing {n, 1} as an edge as well.
对于任意n≥3的整数,定义n个顶点Cn上的循环图如下:取n个顶点,标为1,2,…n.现在,绘制边{1,2},{2,3},…直到最后一条边{n−1,n};然后将其连接成一个闭合循环,将{n, 1}也画成一条边。
例如:
Graphs: Useful Concepts(图:有用的概念)
Definition 5.7. Take a graph G. We say that two vertices a, b in G are
adjacent if the edge {a, b} is in G. We say that a and b are neighbors
if they are adjacent.
以一个图G为例,如果边{a, b}在G中,我们说G中的两个顶点a, b是相邻的,我们可以说a,b两个顶点是neighbors
Definition 5.8. Take a graph G, and a vertex v in G. We say that the
degree of v, written deg(v), is the number of edges that contain v as an
endpoint.
以一个图G和G中的一个顶点v为例,我们说v的度,写成deg(v),是包含v作为端点的边的数量。
例如:对于如下的图:
顶点a的度为0,顶点b的度为1,顶点d和e的度为2,顶点c的度为3。
Claim 5.1. (The “degree-sum formula,” or “handshaking theorem.”)
Take any graph G. Then, the sum of the degrees of all of the vertices in
G is always two times the number of edges in G.
取任意图G,所有顶点的度数之和总是的边数的两倍。
Claim 5.2. You cannot have a graph on seven vertices in which the
degree of every vertex is 3.
你不可能有一个有七个顶点的图每个顶点的度数都是3。
Walks and connectedness(走法和连通性)
Definition 5.9. In a graph G, we define a walk of length n as any
sequence of n edges from G of the form
{v0, v1}, {v1, v2}, {v2, v3}, . . . , {vn−1, vn}.
We say that this walk starts at v0 and ends at vn.
We say that a walk is a circuit or closed walk if it starts where it ends;
i.e. if v0 = vn.
We say that a walk is a path if it does not repeat any vertices, with the
following exception: if the first and last vertex of path are the same and
all of the others are distinct, we allow this to be a path as well. In this
last case, we call our walk a cycle.
We often describe a walk by just listing its vertices in order: i.e.
v0 → v1 → v2 → . . . → vn−1 → vn
is a valid way to describe a walk.
在图G中,我们定义了一个长度为n的步长,即从图G出发的任意n条边的序列
对于:
{v0, v1}, {v1, v2}, {v2, v3}, . . . , {vn−1, vn}.
这段路程从v0开始,到vn结束。
如果步行从终点开始,我们就称其为环行或封闭的步行;即如果v0 = vn。
我们说一次行走是一条路径,如果它没有重复任何顶点,除了以下的例外:如果路径的第一个和最后一个顶点是相同的,并且所有其他的顶点是不同的,我们允许它也是一条路径。在最后一种情况下,我们称之为步行周期。
我们经常通过按顺序列出它的顶点来描述一次行走。
v0→v1→v2→…→vn−1→vn是描述步行的有效方法。
注意,行走可以重复边和顶点!
Definition 5.10. Given a graph G, we say that G is connected if for
every pair of vertices a, b in G, there is a path from a to b in G.
给定一个图G,如果对于G中的每一对顶点a, b,在G中有一条从a到b的路径,我们说G是连通的,