基于Pytorch的猫狗图片分类【深度学习CNN】

猫狗分类来源于Kaggle上的一个入门竞赛——Dogs vs Cats。为了加深对CNN的理解,基于Pytorch复现了LeNet,AlexNet,ResNet等经典CNN模型,源代码放在GitHub上,地址传送点击此处。项目大纲如下:
在这里插入图片描述


文章目录

  • 一、问题描述
  • 二、数据集处理
    • 1 损坏图片清洗
    • 2 抽取图片形成数据集
  • 三、图片预处理
    • (1)init 方法
    • (2)getitem方法
    • (3)len方法
    • (4)测试
  • 四、模型
    • 1 LeNet
    • 2 AlexNet模型
  • 五、训练
    • 1 开始训练
    • 2 tensorboard可视化
  • 六、不同模型训练结果分析
    • 1 LeNet模型
      • (1) 数据集数量=1000,无数据增强
      • (2) 数据集数量=4000,无数据增强
      • (3)数据集数量=4000,数据增强
      • (4)数据集=4000,数据增强
      • (5)使用dropout函数抑制过拟合
    • 2 AlexNet模型
    • 3 squeezeNet模型
    • 4 resNet模型
    • 总结
  • 七、预测


一、问题描述

基于训练集数据,训练一个模型,利用训练好的模型预测未知图片中的动物是狗或者猫的概率。

训练集有25,000张图片,测试集12,500 张图片。

数据集下载地址:https://www.kaggle.com/datasets/shaunthesheep/microsoft-catsvsdogs-dataset

截屏2024-02-19 15.56.01

二、数据集处理

1 损坏图片清洗

01_clean.py中,用多种方式来清洗损坏图片:

  1. 判断开头是否有JFIF
  2. 用imghdr库中的imghdr.what函数判断文件类型
  3. 用Image.open(filename).verify()验证图片是否损坏

结果如下:

截屏2022-04-20 下午1.54.15

2 抽取图片形成数据集

由于一万多张图片比较多,并且需要将Cat类和Dog类的图片合在一起并重新命名,方便获得每张图片的labels,所以可以从原图片文件夹复制任意给定数量图片到train的文件夹,并且重命名如下:

截屏2022-04-22 下午3.58.33

程序为:02_data_processing.py.

三、图片预处理

图片预处理部分需要完成:

  1. 对图片的裁剪:将大小不一的图片裁剪成神经网络所需的,我选择的是裁剪为**(224x224)**
  2. 转化为张量
  3. 归一化:三个方向归一化
  4. 图片数据增强
  5. 形成加载器:返回图片数据和对应的标签,利用Pytorch的Dataset包

dataset.py中定义Mydata的类,继承pytorch的Dataset,定义如下三个方法:

(1)init 方法

读取图片路径,并拆分为数据集和验证集(以下代码仅体现结构,具体见源码):

class Mydata(data.Dataset):"""定义自己的数据集"""def __init__(self, root, Transforms=None, train=True):"""进行数据集的划分"""if train:self.imgs = imgs[:int(0.8*imgs_num)]  #80%训练集else:self.imgs = imgs[int(0.8*imgs_num):]  #20%验证集"""定义图片处理方式"""if Transforms is None:normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])self.transforms = transforms.Compose([ transforms.CenterCrop(224), transforms.Resize([224,224]),transforms.ToTensor(), normalize])

(2)getitem方法

对图片处理,返回数据和标签:

 def __getitem__(self, index):return data, label

(3)len方法

返回数据集大小:

    def __len__(self):"""返回数据集中所有图片的个数"""  return len(self.imgs)

(4)测试

实例化数据加载器后,通过调用getitem方法,可以得到经过处理后的 3 × 244 × 244 3\times244\times244 3×244×244的图片数据

if __name__ == "__main__":root = "./data/train"train = Mydata(root, train=True)  #实例化加载器img,label=train.__getitem__(5)    #获取index为5的图片print(img.dtype)print(img.size(),label)   print(len(train))    #数据集大小
#输出
torch.float32
torch.Size([3, 224, 224]) 0
3200

裁剪处理后图片如下所示,大小为224X224

截屏2022-04-22 下午5.28.56

四、模型

模型都放在 models.py中,主要用了一些经典的CNN模型:

  1. LeNet
  2. ResNet
  3. ResNet
  4. SqueezeNet

下面给出重点关注的LeNet模型和AlexNet模型:

1 LeNet

LeNet模型是一个早期用来识别手写数字图像的卷积神经网络,这个名字来源于LeNet论文的第一作者Yann LeCun。LeNet展示了通过梯度下降训练卷积神经网络可以达到手写数字识别在当时最先进的结果,LeNet模型结构图示如下所示:

截屏2022-04-29 下午7.54.44

由上图知,LeNet分为卷积层块全连接层块两个部分,在本项目中我对LeNet模型做了相应的调整

  1. 采用三个卷积层
  2. 三个全连接层
  3. ReLu作为激活函数
  4. 在卷积后正则化
class LeNet(nn.Module):def __init__(self):super(LeNet, self).__init__()self.relu = nn.ReLU()self.sigmoid = nn.Sigmoid()#三个卷积层self.conv1 = nn.Sequential(nn.Conv2d(in_channels=3,out_channels=16,kernel_size=3,stride=2,),nn.BatchNorm2d(16),nn.ReLU(),nn.MaxPool2d(kernel_size=2),)self.conv2 = nn.Sequential(nn.Conv2d(in_channels=16,out_channels=32,kernel_size=3,stride=2,),nn.BatchNorm2d(32),nn.ReLU(),nn.MaxPool2d(kernel_size=2),)self.conv3 = nn.Sequential(nn.Conv2d(in_channels=32,out_channels=64,kernel_size=3,stride=2,),nn.BatchNorm2d(64),nn.ReLU(),nn.MaxPool2d(kernel_size=2),)#三个全连接层self.fc1 = nn.Linear(3 * 3 * 64, 64)self.fc2 = nn.Linear(64, 10)self.out = nn.Linear(10, 2)   #分类类别为2,def forward(self, x):x = self.conv1(x)x = self.conv2(x)x = self.conv3(x)x = x.view(x.shape[0], -1)x = self.relu(self.fc1(x))x = self.relu(self.fc2(x))x = self.out(x)return x

调用torchsummary库,可以观察模型的结构、参数:

截屏2022-04-30 上午12.35.15

2 AlexNet模型

2012年,AlexNet横空出世,这个模型的名字来源于论文第一作者的姓名Alex Krizhevsky。AlexNet使用了8层卷积神经网络,由5个卷积层和3个池化Pooling 层 ,其中还有3个全连接层构成。AlexNet 跟 LeNet 结构类似,但使⽤了更多的卷积层和更⼤的参数空间来拟合⼤规模数据集 ImageNet,它是浅层神经⽹络和深度神经⽹络的分界线。

特点:

  1. 在每个卷积后面添加了Relu激活函数,解决了Sigmoid的梯度消失问题,使收敛更快。
  2. 使用随机丢弃技术(dropout)选择性地忽略训练中的单个神经元,避免模型的过拟合(也使用数据增强防止过拟合)
  3. 添加了归一化LRN(Local Response Normalization,局部响应归一化)层,使准确率更高。
  4. 重叠最大池化(overlapping max pooling),即池化范围 z 与步长 s 存在关系 z>s 避免平均池化(average pooling)的平均效应

五、训练

训练在 main.py中,主要是对获取数据、训练、评估、模型的保存等功能的整合,能够实现以下功能:

  1. 指定训练模型、epoches等基本参数
  2. 是否选用预训练模型
  3. 接着从上次的中断的地方继续训练
  4. 保存最好的模型和最后一次训练的模型
  5. 对模型的评估:Loss和Accuracy
  6. 利用TensorBoard可视化

1 开始训练

main.py程序中,设置参数和模型(models.py中可以查看有哪些模型):

截屏2022-04-29 下午11.22.34

在vscode中点击运行或在命令行中输入:

python3 main.py

即可开始训练,开始训练后效果如下:

截屏2022-04-30 上午8.24.14

若程序中断,设置resume参数为True,可以接着上次的模型继续训练,可以非常方便的任意训练多少次

2 tensorboard可视化

在vscode中打开tensorboard,或者在命令行中进入当前项目文件夹下输入

tensorboard --logdir runs

即可打开训练中的可视化界面,可以很方便的观察模型的效果:

截屏2022-04-30 上午8.28.37

如上图所示,可以非常方便的观察任意一个模型训练过程的效果!

六、不同模型训练结果分析

1 LeNet模型

在用LeNet模型训练的过程中,通过调整数据集数量、是否用数据增强等不同的方法,来训练模型,并观察模型的训练效果。

(1) 数据集数量=1000,无数据增强

通过Tensorboard可视化可以观察到:

  1. 验证集准确率(Accuracy)在上升,训练30epoch左右,达到最终**63%**左右的最好效果
  2. 但验证集误差(Loss)也在上升,训练集误差一直下降
  3. 训练集误差接近于0

说明模型在训练集上效果好,验证集上效果不好,泛化能力差,可以推测出模型过拟合了。而这个原因也是比较好推测的,数据集比较少。

截屏2022-04-29 下午8.23.09

(2) 数据集数量=4000,无数据增强

同样过拟合了,但是最后的准确率能达到**68%**左右,说明数据集增加有效果

截屏2022-04-29 下午8.32.01

(3)数据集数量=4000,数据增强

这次数据集数量同上一个一样为4000,但采用了如下的数据增强:

  1. 水平翻转,概率为p=0.5
  2. 上下翻转,概率为p=0.1

我们可以看到这次一开始验证集误差是下降的,说明一开始没有过拟合,但到15个epoch之后验证集误差开始上升了,说明已经开始过拟合了,但最后的准确率在**71%**左右,说明数据增强对扩大数据集有明显的效果。

截屏2022-04-29 下午8.38.00

(4)数据集=4000,数据增强

这次数据集数量为4000,但采用了如下的数据增强:

  1. 水平翻转,概率为p=0.5
  2. 上下翻转,概率为p=0.5
  3. 亮度变化截屏2022-04-29 下午8.48.10

可以看到:

  1. 35个epoch之前,验证集误差呈下降趋势,准确率也一直上升,最高能到75%
  2. 但在35个epoch之后,验证集误差开始上升,准确率也开始下降

说明使用了更强的数据增强之后,模型效果更好了。

截屏2022-04-29 下午8.50.01

(5)使用dropout函数抑制过拟合

本次数据集和数据增强方式同(4),但是在模型的第一个全连接层加入dropout函数。

dropout原理:

训练过程中随机丢弃掉一些参数。在前向传播的时候,让某个神经元的激活值以一定的概率p(伯努利分布)停止工作,这样可以使模型泛化性更强。截屏2022-04-29 下午8.59.39

不使用dropout示意图 使用dropout示意图

这样相当于每次训练的是一个比较"瘦"的模型,更不容易过拟合

加入dropout函数后,训练85个epochs,可以观察到效果十分显著

  1. 验证集的误差总体呈现下降趋势,且最后没有反弹
  2. 训练集误差下降比较慢了!
  3. 准确率一直上升,最后可以达到76%

说明模型最后没有过拟合,并且效果还不错。

截屏2022-04-29 下午9.03.21

2 AlexNet模型

将AlexNet模型参数打印出来:

截屏2022-04-30 上午12.58.58

可以看到AlexNet相比LeNet,参数数目有数量级的上升,而在数据量比较小的情况下,很容易梯度消失,经过反复的调试:

  1. 要在卷积层加入正则化
  2. 优化器选择SGD
  3. 学习率不能过大

才能避免验证集的准确率一直在50%

经过调试,较好的一次结果如下所示,最终准确率能达到78%

截屏2022-04-30 上午1.10.08

3 squeezeNet模型

在后面两个模型中,使用迁移学习的方法。

**迁移学习(Transfer Learning)**是机器学习中的一个名词,是指一种学习对另一种学习> 的影响,或习得的经验对完成其它活动的影响。迁移广泛存在于各种知识、技能与社会规范> 的学习中,将某个领域或任务上学习到的知识或模式应用到不同但相关的领域或问题中。``截屏2022-04-29 下午11.58.32```

使用squeezeNet预训练模型,在迭代16个epoch后,准确率可以达到93%

截屏2022-04-29 下午11.51.43

4 resNet模型

使用resnet50的预训练模型,训练25个epoch后,准确率可以达到98%!

截屏2022-04-30 上午12.12.36

总结

模型测试集预测准确率
LeNet(无数据增强)68%
LeNet(数据增强)75%
LeNet(采用Dropout)76%
Alexnet78%
squeezeNet(迁移学习)93%
resNet98%

七、预测

模型训练好后,可以打开 predict.py对新图片进行预测,给定用来预测的模型和预测的图片文件夹:

 model = LeNet1() # 模型结构modelpath = "./runs/LeNet1_1/LeNet1_best.pth" # 训练好的模型路径checkpoint = torch.load(modelpath)  model.load_state_dict(checkpoint)  # 加载模型参数root = "test_pics"

运行 predict.py 会将预测的图片储存在 output文件夹中,如下图所示:

pre_04_cat

会给出预测的类别和概率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/264101.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

高等数学(无穷小与无穷大)

目录 一、无穷小 二、无穷大 三、无穷小与无穷大的关系 四、无穷小量的阶的比较 一、无穷小 二、无穷大 三、无穷小与无穷大的关系 四、无穷小量的阶的比较

Elastic Search:构建语义搜索体验

当你逐步熟悉 Elastic 时,你将使用 Elasticsearch Relevance Engine™ (ESRE),该引擎旨在为 AI 搜索应用程序提供支持。 借助 ESRE,你可以利用一套开发人员工具,包括 Elastic 的文本搜索、向量数据库和我们用于语义搜索的专有转换…

Unity中URP实现水体(水下的扭曲)

文章目录 前言一、使用一张法线纹理,作为水下扭曲的纹理1、在属性面板定义一个纹理,用于传入法线贴图2、在Pass中,定义对应的纹理和采样器3、在常量缓冲区,申明修改 Tilling 和 Offset 的ST4、在顶点着色器,计算得到 应…

NLP 使用Word2vec实现文本分类

🍨 本文为[🔗365天深度学习训练营学习记录博客 🍦 参考文章:365天深度学习训练营 🍖 原作者:[K同学啊 | 接辅导、项目定制]\n🚀 文章来源:[K同学的学习圈子](https://www.yuque.com/…

PyPDF2:项目实战源码分享(PDF裁剪)

目录📑 1. 背景📑2. 源码模块解析📑2.1 读取PDF页数2.2 获取指定页的宽高尺寸2.3 裁剪单页PDF2.4 批量裁剪PDF 总结📑 1. 背景📑 接PyPDF2模块推荐博文中提到的实际需求(将银行网站下载来的多页且单页多张…

Android LinearLayout 如何让子元素靠下居中对齐 center bottom

Android LinearLayout 如何让子元素靠下居中对齐 center bottom 首先你需要知道两个知识点: android:layout_gravity 指定的是当前元素在父元素中的位置android:gravity 指定的是当前元素子元素的排布位置 比如: 有这么一个布局,我需要让…

【elasticsearch实战】知识库文件系统检索工具FSCrawler

需求背景 最近有一个需求需要建设一个知识库文档检索系统,这些知识库物料附件的文档居多,有较多文档格式如:PDF, Open Office, MS Office等,需要将这些格式的文件转化成文本格式,写入elasticsearch 的全文检索索引&am…

MySQL - 事务日志

目录 1. redo日志 1.1 为什么需要REDO日志 1.2 REDO日志的好处、特点 1. 好处 2. 特点 1.3 redo的组成 1.4 redo的整体流程 1.5 redo log的刷盘策略 1.6 不同刷盘策略演示 1. 流程图 ​编辑2. 举例 1.7 写入redo log buffer 过程 1.8 redo log file 1. 相关参数…

【进程创建】

目录 进程创建的方式查看进程pid 调用系统调用创建子进程fock函数做了的工作子进程刚开始创建的状态 一个变量,两个不同的值创建子进程的作用 进程创建的方式 1.在操作系统上输入的指令。 2.已经启动的软件。 3.程序员在代码层面上调用系统调用创建进程。 linux中第…

使用Node.js和Vue.js构建全栈Web应用

随着互联网的迅速发展,Web应用程序的开发变得越来越复杂和多样化。为了满足用户不断变化的需求,全栈开发已成为一个备受关注的话题。在本篇博客中,我将介绍如何使用Node.js和Vue.js来构建全栈Web应用。 Node.js是一个基于Chrome V8引擎的Jav…

基于R语言的Meta分析【全流程、不确定性分析】方法与Meta机器学习技术应用

Meta分析是针对某一科研问题,根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法,对来源不同的研究成果进行收集、合并及定量统计分析的方法,最早出现于“循证医学”,现已广泛应用于农林生态,资源环境等方面。…

【架构】GPU架构总结

文章目录 GPU架构GPU渲染内存架构Streaming Multiprocessor(SM)CUDA CoreTensor CoreRT CoreCPU-GPU异构系统GPU资源管理模型 GPU架构演进G80 架构Fermi 架构Maxwell架构Tesla架构Pascal架构Volta 架构Turing架构Ampere 架构Hopper架构 参考文献 GPU架构 主要组成包括&#xf…

每日五道java面试题之spring篇(六)

目录: 第一题 ApplicationContext通常的实现是什么?第二题 什么是Spring的依赖注入?第三题 依赖注入的基本原则第四题 依赖注入有什么优势?第五题 有哪些不同类型的依赖注入实现方式? 第一题 ApplicationContext通常的…

uniapp微信小程序解决上方刘海屏遮挡

问题 在有刘海屏的手机上,我们的文字和按钮等可能会被遮挡 应该避免这种情况 解决 const SYSTEM_INFO uni.getSystemInfoSync();export const getStatusBarHeight ()> SYSTEM_INFO.statusBarHeight || 15;export const getTitleBarHeight ()>{if(uni.get…

DiceCTF 2024 -- pwn

baby-talk 题目给了 Dockerfile,但由于笔者 docker 环境存在问题启动不起来,所以这里用虚拟机环境做了(没错,由于不知道远程 glibc 版本,所以笔者远程也没打通)笔者本地环境为 glibc 2.31-0ubuntu9.9。然后…

无人机精准定位技术,GPS差分技术基础,RTK原理技术详解

差分GPS的基本原理 差分GPS(Differential GPS,简称DGPS)的基本原理是利用一个或多个已知精确坐标的基准站,与用户(移动站)同时接收相同的GPS卫星信号。由于GPS定位时会受到诸如卫星星历误差、卫星钟差、大…

Linux系统中前后端分离项目部署指南

目录 一.nginx安装以及字启动 解压nginx 一键安装4个依赖 安装nginx 启动 nginx 服务 开放端口号 并且在外部访问 设置nginx自启动 二.配置负载均衡 1.配置一个tomact 修改端口号 8081端口号 2.配置负载均衡 ​编辑 三.部署前后端分离项目 1.项目部署后端 ​编辑…

锂电池SOC估计 | PyTorch实现基于Basisformer模型的锂电池SOC估计

目录 预测效果基本介绍程序设计参考资料 预测效果 基本介绍 PyTorch实现基于Basisformer模型的锂电池SOC估计 锂电池SOC估计,全新【Basisformer】时间序列预测 1.采用自适应监督自监督对比学习方法学习时序特征; 2.通过双向交叉注意力机制计算历史序列和…

【MATLAB源码-第144期】基于matlab的蝴蝶优化算法(BOA)无人机三维路径规划,输出做短路径图和适应度曲线。

操作环境: MATLAB 2022a 1、算法描述 ​蝴蝶优化算法(Butterfly Optimization Algorithm, BOA)是基于蝴蝶觅食行为的一种新颖的群体智能算法。它通过模拟蝴蝶个体在寻找食物过程中的嗅觉导向行为以及随机飞行行为,来探索解空间…

java.lang.IllegalStateException: Promise already completed.

spark submit 提交作业的时候提示Promise already complete 完整日志如下 File "/data5/hadoop/yarn/local/usercache/processuser/appcache/application_1706192609294_136972/container_e41_1706192609294_136972_02_000001/py4j-0.10.6-src.zip/py4j/protocol.py"…