【C语言基础】:操作符详解(二)

文章目录

    • 操作符详解
      • 一、上期扩展
      • 二、单目操作符
      • 三、逗号表达式
      • 四、下标访问[]、 函数调用()
      • 五、结构成员访问操作符
      • 六、操作符的属性:优先级、结合性
        • 1. 优先级
        • 2. 结合性

操作符详解

上期回顾:【C语言基础】:操作符详解(一)

一、上期扩展

【练习一】:不能创建临时变量(第三个变量), 实现两个整数的交换。

方法一:我们可以运用加减法来实现这个功能。
分析:

交换前:a = 3,b = 5;
我们先让 a + b 然后把这个结果赋值给a,也就是a = a + b
现在a的值变成了8,而b的值还是5;
接下来我们让a - b,把这个表达式赋值给吧,也就是b = a - b
现在a的值是8,b的值是3;
最后我们只要将a - b这个表达式赋值给a就行啦,也就是a = a - b。
我们就会发现a和b的值发生了互换。

下面是代码实现:

#include<stdio.h>
int main()
{int a = 3;int b = 5;printf("交换前:a = %d b = %d\n", a, b);a = a + b;// a = 8, b = 5b = a - b;// a = 8, b = 3a = a - b;// a = 5, b = 3printf("交换后:a = %d b = %d\n", a, b);return 0;
}

在这里插入图片描述
很明显,这种方法也存在着明显的不足,那就是当a和b的值比较大时,a和b可能会超出int的范围,会出现溢出的现象,导致无法进行值的互换。

方法二:按位异或实现
上次我们学习了位操作符,其中按位异或就是对应二进制位相同为0,相异为1。根据这个特性,我们也能实现这个功能。

分析

首先我们要了解按位异或中几种特殊的情况。比如a ^ aa ^ 0等等。
1101
1101
按位异或后的结果就是0,而任何数与0按位异或后还是它本身。
根据这个特点,我们也能实现a和b的互换。
注意:按位异或是支持交换律的。

下面说代码实现:

#include<stdio.h>
int main()
{int a = 3;int b = 5;printf("交换前:a = %d b = %d\n", a, b);a = a ^ b;b = a ^ b;  // b = a ^ b ^ b, b ^ b就等于0// 现在a = a ^ b, b = aa = a ^ b;// a = a ^ b ^ a, 因为a ^ a等于0// 现在a = b, b = aprintf("交换后:a = %d b = %d\n", a, b);return 0;
}

在这里插入图片描述
这种方法也存在着局限性,首先要知道按位操作符的操作数必须是整数,其次代码的可读性也不高,不方便他人理解。

【练习二】编写代码实现:求一个整数存储在内存中的二进制中1的个数。

方法一:通过不断的去模2,除2来获得二进制中1的个数。
注意:这里是指补码

#include<stdio.h>
int count_one_of_bite(unsigned int n)
{int count = 0; // 计数while (n){if (n % 2 == 1)count++;n = n / 2;}return count;
}
int main()
{int n = 0;scanf("%d", &n);int ret = count_one_of_bite(n);printf("二进制中一的个数:%d\n", ret);return 0;
}

在这里插入图片描述

方法二:n & (n - 1)

#include<stdio.h>
int count_one_of_bite(unsigned int n)
{int count = 0; // 计数while (n){count++;n = n & (n - 1);}return count;
}
int main()
{int n = 0;scanf("%d", &n);int ret = count_one_of_bite(n);printf("二进制中一的个数:%d\n", ret);return 0;
}

在这里插入图片描述

二、单目操作符

单目操作符(Unary Operator)是一种只操作一个操作数的操作符。

!++&+-~*、sizeof(类型)

  1. 正号 (+):用于表示正数,例如 +5 表示正数 5。
  2. 负号 (-):用于表示负数,例如 -5 表示负数 5。
  3. 递增 (++):用于将操作数的值增加 1。可以作为前缀 (++i) 或后缀 (i++) 使用。
  4. 递减 (–):用于将操作数的值减少 1。可以作为前缀 (–i) 或后缀 (i–) 使用。
  5. 取址 (&):用于获取变量的内存地址,例如 &x 表示变量 x 的地址。
  6. 解引用 (*):用于访问指针所指向的内存中的值。例如,*ptr 表示指针 ptr 指向的值。
  7. 逻辑非 (!):用于求取操作数的逻辑非,即取反。例如,!x 表示 x 的逻辑非。
  8. 按位取反 (~):用于对操作数执行按位取反操作。例如, ~ x 表示对 x 的每个位取反。

这些是 C 语言中常用的一些单目操作符。它们可以用来执行各种不同的操作,如数值运算、递增递减、逻辑运算和位运算等。

三、逗号表达式

逗号表达式(Comma Expression)是一种由逗号操作符连接起来的表达式,其特点是依次计算每个子表达式,并返回最后一个子表达式的值作为整个表达式的值。逗号表达式的一般形式如下:

expr1, expr2, expr3, ..., exprN

在逗号表达式中,逗号操作符 , 用于连接多个子表达式。在计算逗号表达式时,每个子表达式都会按顺序依次执行,但整个表达式的值将是最后一个子表达式的值。

逗号表达式在 C 语言中可以用于一些特定的场景,如在 for 循环的初始化和迭代部分、函数调用参数中以及变量初始化等地方。例如,在 for 循环中使用逗号表达式可以同时初始化多个变量:

for (int i = 0, j = 10; i < 10; i++, j--) {// 循环体
}

在函数调用参数中使用逗号表达式可以依次计算多个表达式并将它们作为函数的参数:

int result = myFunction(a, b, c+1, d*2);

逗号表达式的使用要谨慎,因为它可能会使代码变得难以理解。在某些情况下,使用逗号表达式可能降低代码的可读性,因此应该根据具体情况慎重考虑是否使用。

【练习】

#include<stdio.h>
int main()
{int a = 1;int b = 2;int c = (a > b, a = b + 10, a, b = a + 1);  // 逗号表达式printf("%d\n", c);return 0;
}

可以看到,第六行是一个逗号表达式,从左到右依次进行计算,最后返回最右边的结果。
在这里插入图片描述

四、下标访问[]、 函数调用()

[ ] 下标引用操作符
操作数:一个数组名 + 一个索引值(下标)

【举例】

int arr[10];//创建数组
arr[9] = 10;//实用下标引用操作符。
[]的两个操作数是arr和9

函数调用操作符
接受一个或者多个操作数:第⼀个操作数是函数名,剩余的操作数就是传递给函数的参数。

【举例】

#include <stdio.h>
void test1()
{printf("hehe\n");
}
void test2(const char *str)
{printf("%s\n", str);
}
int main()
{test1(); //这⾥的()就是作为函数调⽤操作符。test2("hello world");//这⾥的()就是函数调⽤操作符。return 0;
}

五、结构成员访问操作符

结构体
结构体(Struct)是一种用户自定义的数据类型,用于将不同类型的数据组合成一个单独的实体。结构体能够将多个变量打包成一个整体,方便操作和传递。

结构是⼀些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量,如:标量、数组、指针,甚⾄是其他结构体。

结构体的声明包括两个部分:结构体模板的定义和结构体变量的声明。

  1. 结构体模板的定义:
struct 结构体名称 {数据类型 成员1;数据类型 成员2;// 更多成员...
};

其中,“结构体名称” 是用户定义的结构体类型的名称,可以根据需要自行命名。“成员1”、“成员2” 等是结构体中的成员变量,每个成员变量都有自己的数据类型。

【示例】:坐标结构体的定义

struct Point {int x;int y;
};

这个结构体定义了一个名为 Point 的结构体类型,它有两个成员变量 x 和 y,都是 int 类型。

  1. 结构体变量的声明:
struct 结构体名称 变量名称;

在结构体定义之后,可以通过声明结构体变量来创建实际的结构体对象。

【示例】:使用上述定义的 Point 结构体来声明一个名为 p 的结构体变量

struct Point p;

现在,变量 p 是一个具有两个成员变量的结构体对象。可以通过 . 运算符来访问结构体的成员变量,例如 p.x 或 p.y。

另外,C 语言还提供了一种更简洁的方式来声明结构体变量,即使用 typedef 关键字:

typedef struct {数据类型 成员1;数据类型 成员2;// 更多成员...
} 结构体名称;

这样就可以直接使用 结构体名称 来定义结构体变量,而不需要再写 struct 关键字。例如:

typedef struct {int x;int y;
} Point;
Point p;

这里的 Point 就是一个结构体类型,并且可以直接用于声明结构体变量。

//代码1:变量的定义
struct Point
{int x;int y;
}p1;               //声明类型的同时定义变量p1
struct Point p2;    //定义结构体变量p2//代码2:初始化。
struct Point p3 = { 10, 20 };struct Stu        //类型声明
{char name[15];//名字int age;     //年龄
};struct Stu s1 = { "zhangsan", 20 };//初始化
struct Stu s2 = { .age = 20, .name = "lisi" };//指定顺序初始化//代码3
struct Node
{int data;struct Point p;struct Node* next;
}n1 = { 10, {4,5}, NULL };            //结构体嵌套初始化
struct Node n2 = { 20, {5, 6}, NULL };//结构体嵌套初始化

结构体成员的直接访问
结构体成员的直接访问是通过点操作符( .) 访问的。点操作符接受两个操作数。如下所示:

#include <stdio.h>
struct Point
{int x;int y;
}p = { 1,2 };
int main()
{printf("x: %d y: %d\n", p.x, p.y);return 0;
}

在这里插入图片描述
使用方式:结构体变量.成员名

结构体成员的间接访问
有时候我们得到的不是⼀个结构体变量,而是得到了⼀个指向结构体的指针。如下所示:

#include <stdio.h>
struct Point
{int x;int y;
};
int main()
{struct Point p = {3, 4};struct Point *ptr = &p;ptr->x = 10;ptr->y = 20;printf("x = %d y = %d\n", ptr->x, ptr->y);return 0;
}

在这里插入图片描述
使用方式:结构体指针->成员名

综合举例

#include <stdio.h>
#include <string.h>
struct Stu
{char name[15];//名字int age; //年龄
};
void print_stu(struct Stu s)
{printf("%s %d\n", s.name, s.age);
}
void set_stu(struct Stu* ps)
{strcpy(ps->name, "李四");ps->age = 28;
}
int main()
{struct Stu s = { "张三", 20 };print_stu(s);set_stu(&s);print_stu(s);return 0;
}

在这里插入图片描述

六、操作符的属性:优先级、结合性

C语⾔的操作符有2个重要的属性:优先级、结合性,这两个属性决定了表达式求值的计算顺序。

1. 优先级

优先级指的是,如果⼀个表达式包含多个运算符,哪个运算符应该优先执⾏。各种运算符的优先级是不⼀样的。

3 + 4 * 5;

上⾯⽰例中,表达式 3 + 4 * 5 ⾥⾯既有加法运算符( + ),⼜有乘法运算符( * )。由于乘法的优先级⾼于加法,所以会先计算 4 * 5 ,⽽不是先计算 3 + 4 。
在这里插入图片描述
在这里插入图片描述

2. 结合性

如果两个运算符优先级相同,优先级没办法确定先计算哪个了,这时候就看结合性了,则根据运算符是左结合,还是右结合,决定执行顺序。⼤部分运算符是左结合(从左到右执行),少数运算符是右结合(从右到左执行),比如赋值运算符( = )。

5 * 6 / 2;

上面示例中, * 和 / 的优先级相同,它们都是左结合运算符,所以从左到右执行,先计算 5 * 6 ,再计算 6 / 2 。
运算符的优先级顺序很多,下⾯是部分运算符的优先级顺序(按照优先级从高到低排列),建议大概记住这些操作符的优先级就行,其他操作符在使用的时候查看下面表格就可以了。

• 圆括号( () )
• ⾃增运算符( ++ ),⾃减运算符( – )
• 单⽬运算符( + 和 - )
• 乘法( * ),除法( / )
• 加法( + ),减法( - )
• 关系运算符( < 、 > 等)
• 赋值运算符( = )

由于圆括号的优先级最高,可以使用它改变其他运算符的优先级。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/264845.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring Security源码学习

Spring Security本质是一个过滤器链 过滤器链本质是责任链设计模型 1. HttpSecurity 【第五篇】深入理解HttpSecurity的设计-腾讯云开发者社区-腾讯云 在以前spring security也是采用xml配置的方式&#xff0c;在<http>标签中配置http请求相关的配置&#xff0c;如用户…

unity Android包安装运行后提示:此要用与最新版Android不兼容。

问题 unity 打包apk&#xff0c;安装运行后提示**“此要用与最新版Android不兼容。…” 解决办法 参考文献 https://blog.csdn.net/liweidecsdn/article/details/135997780

【软件测试】--功能测试2--常用设计测试用例方法

一、解决穷举场景 重点&#xff1a;使用等价类划分法 1.1 等价类划分法 重点&#xff1a;有效等价和单个无效等价各取1个即可。 步骤&#xff1a;1、明确需求2、确定有效和无效等价3、根据有效和无效造数据编写用例 1.2 案例&#xff08;qq合法验证&#xff09; 需求&#xff…

【MySQL】学习和总结联合查询

&#x1f308;个人主页: Aileen_0v0 &#x1f525;热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ​&#x1f4ab;个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-OPj5g6evbkm5ol0U {font-family:"trebuchet ms",verdana,arial,sans-serif;font-siz…

番外篇 | YOLOv5+DeepSort实现行人目标跟踪检测

前言:Hello大家好,我是小哥谈。DeepSort是一种用于目标跟踪的深度学习算法。它结合了目标检测和目标跟踪的技术,能够在视频中准确地跟踪多个目标,并为每个目标分配一个唯一的ID。DeepSort的核心思想是将目标检测和目标跟踪两个任务进行联合训练,以提高跟踪的准确性和稳定性…

ChatGPT 国内快速上手指南

ChatGPT简介 ChatGPT是由OpenAI团队研发的自然语言处理模型&#xff0c;该模型在大量的互联网文本数据上进行了预训练&#xff0c;使其具备了深刻的语言理解和生成能力。 GPT拥有上亿个参数&#xff0c;这使得ChatGPT在处理各种语言任务时表现卓越。它的训练使得模型能够理解上…

2024水科技大会暨技术装备成果展览会——高品质供水和饮用水水源安全保障论坛

供水与饮水安全直接关系到人民群众的生活与健康&#xff0c;切实做好城市供水与饮水安全保障工作&#xff0c;是把以人为本真正落到实处的一项紧迫任务。近年来&#xff0c;中央和地方加大了城乡供水与饮水安全保障工作的力度&#xff0c;对标最优质供水城市建设要求&#xff0…

相机的常见参数分析

1. 像元尺寸&#xff1a; 是指数字成像系统中&#xff0c;每个像素的物理大小&#xff0c;上图中相机单个像素的物理尺寸时2.4um 2、图像的像素&#xff1a; 图像是由像素所组成的&#xff0c;像素的多少表明摄像机所含有的感光元件的多少。像素是指一张图像中所有的像素数之…

【pytorch】常用代码

文章目录 条件与概率torch.tensor()torch.rand()torch.randn()torch.randint()torch.multinominal() 逻辑运算torch.argmax()torch.max()torch.sum()torch.tanh()torch.pow() 功能性操作 torch.nn.functionalF.normalize()F.elu()F.relu()F.softmax() 张量计算torch.zeros()tor…

python Matplotlib Tkinter-->tab切换1

环境 python:python-3.12.0-amd64 包: matplotlib 3.8.2 pillow 10.1.0 import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk import tkinter as tk import tkinter.messagebox as messagebox import …

实验室储样瓶耐强酸强碱PFA材质试剂瓶适用新材料半导体

PFA&#xff0c;全名可溶性聚四氟乙烯&#xff0c;试剂瓶又叫取样瓶、样品瓶、广口瓶、储样瓶等。主要用于痕量分析、同位素分析等实验室&#xff0c;广泛应用于新兴的半导体、新材料、多晶硅、硅材、微电子等行业。 规格参考&#xff1a;30ml、60ml、100ml、125ml、250ml、30…

MATLAB环境下一种改进的瞬时频率(IF)估计方法

相对于频率成分单一、周期性强的平稳信号来说&#xff0c;具有非平稳、非周期、非可积特性的非平稳信号更普遍地存在于自然界中。调频信号作为非平稳信号的一种&#xff0c;由于其频率时变、距离分辨率高、截获率低等特性&#xff0c;被广泛应用于雷达、地震勘测等领域。调频信…

三、系统知识笔记-计算机系统基础知识

一、计算机系统概述 计算机系统是指用于数据管理的计算机硬件、软件及网络组成的系统。 它是按人的要求接收和存储信息&#xff0c;自动进行数据处理和计算&#xff0c;并输出结果信息的机器系统。 冯诺依曼体系计算机结构&#xff1a; 1.1计算机硬件组成 冯诺依曼计算机结…

pclpy 最小二乘法拟合平面

pclpy 最小二乘法拟合平面 一、算法原理二、代码三、结果1.左边原点云、右边最小二乘法拟合平面后点云投影 四、相关数据 一、算法原理 平面方程的一般表达式为&#xff1a; A x B y C z D 0 ( C ≠ 0 ) Ax By Cz D 0 \quad (C\neq0) AxByCzD0(C0) 即&#xff1a; …

Elasticsearch:了解人工智能搜索算法

作者&#xff1a;来自 Elastic Jessica Taylor, Aditya Tripathi 人工智能工具无处不在&#xff0c;其原因并不神秘。 他们可以执行各种各样的任务并找到许多日常问题的解决方案。 但这些应用程序的好坏取决于它们的人工智能搜索算法。 简单来说&#xff0c;人工智能搜索算法是…

QT信号槽实现分析

1.宏定义 qt中引入了MOC来反射&#xff0c;编译阶段变成 MOC–>预处理–>编译–>汇编–>链接 1-1、Q_OBJECT 这个宏定义了一系列代码&#xff0c;包括元对象和处理的函数 #define Q_OBJECT \public: \QT_WARNING_PUSH \Q_OBJECT_NO_OVERRIDE_WARNING \static c…

位运算03 不用加号的加法[C++]

图源&#xff1a;文心一言 上机题目练习整理&#xff0c;位运算&#xff0c;供小伙伴们参考~&#x1f95d;&#x1f95d; 网页版目录在页面的右上角↗~&#x1f95d;&#x1f95d; 第1版&#xff1a;在力扣新手村刷题的记录~&#x1f9e9;&#x1f9e9; 编辑&#xff1a;梅…

二叉树与堆

目录 1.树概念及结构 1.1树的概念 1.2 树的相关概念 1.3 树的表示 1.4 树在实际中的运用&#xff08;表示文件系统的目录树结构&#xff09; 2.二叉树概念及结构 2.1概念 2.2现实中的二叉树&#xff1a; 2.3 特殊的二叉树&#xff1a; 2.4 二叉树的性质 2.5 二叉树的…

高性能 Kafka 及常见面试题

Kafka 是一种分布式的&#xff0c;基于发布/订阅的消息系统&#xff0c;原本开发自 LinkedIn&#xff0c;用作 LinkedIn 的事件流&#xff08;Event Stream&#xff09;和运营数据处理管道&#xff08;Pipeline&#xff09;的基础。 基础原理详解可见 Kafka 基本架构及原理 基础…

【大数据】Flink SQL 语法篇(四):Group 聚合、Over 聚合

Flink SQL 语法篇&#xff08;四&#xff09;&#xff1a;Group 聚合、Over 聚合 1.Group 聚合1.1 基础概念1.2 窗口聚合和 Group 聚合1.3 SQL 语义1.4 Group 聚合支持 Grouping sets、Rollup、Cube 2.Over 聚合2.1 时间区间聚合2.2 行数聚合 1.Group 聚合 1.1 基础概念 Grou…