pclpy 最小二乘法拟合平面

pclpy 最小二乘法拟合平面

      • 一、算法原理
      • 二、代码
      • 三、结果
          • 1.左边原点云、右边最小二乘法拟合平面后点云投影
      • 四、相关数据

一、算法原理

平面方程的一般表达式为:
A x + B y + C z + D = 0 ( C ≠ 0 ) Ax + By + Cz + D = 0 \quad (C\neq0) Ax+By+Cz+D=0(C=0)
即:
Z = − A C x − B C y − D C Z = -\frac{A}{C}x-\frac{B}{C}y-\frac{D}{C} Z=CAxCByCD
记:
a 0 = − A C , a 1 = − B C , a 2 = − D C a_0 = -\frac{A}{C}, a_1 =-\frac{B}{C}, a_2=-\frac{D}{C} a0=CA,a1=CB,a2=CD
所以:
Z = a 0 x + a 1 y + a 2 Z = a_0x + a_1y + a_2 Z=a0x+a1y+a2
要用该 n 个点拟合平面方程,即使:
∑ n = 1 N ( a 0 x + a 1 y + a 2 ) 2 − > m i n \sum_{n=1}^{N}{(a_0x + a_1y + a_2)^2}->min n=1N(a0x+a1y+a2)2>min
要使S最小,对a,b,c求偏导

在这里插入图片描述

改写成矩阵的形式为:

在这里插入图片描述

二、代码

from pclpy import pcl
import numpy as npdef CloudShow(cloud1, cloud2):"""Args:在一个窗口可视化多个点云cloud1: 点云数据1cloud2: 点云数据2"""viewer = pcl.visualization.PCLVisualizer("viewer")  # 建立可刷窗口对象 窗口名 viewerv0 = 1  # 设置标签名(0, 1标记第一个窗口)viewer.createViewPort(0.0, 0.0, 0.5, 1.0, v0)  # 创建一个可视化的窗口viewer.setBackgroundColor(0.0, 0.0, 0.0, v0)  # 设置窗口背景为黑色single_color = pcl.visualization.PointCloudColorHandlerCustom.PointXYZ(cloud1, 255.0, 0, 0.0)  # 将点云设置为红色viewer.addPointCloud(cloud1,  # 要添加到窗口的点云数据。single_color,  # 指定点云的颜色"sample cloud1",  # 添加的点云命名v0)  # 点云添加到的视图v1 = 2  # 设置标签名(2代表第二个窗口)viewer.createViewPort(0.5, 0.0, 1.0, 1.0, v1)  # 创建一个可视化的窗口viewer.setBackgroundColor(255.0, 255.0, 255.0, v1)  # 设置窗口背景为白色single_color = pcl.visualization.PointCloudColorHandlerCustom.PointXYZ(cloud2, 0.0, 255.0, 0.0)  # 将点云设置为绿色viewer.addPointCloud(cloud2,  # 要添加到窗口的点云数据。single_color,  # 指定点云的颜色"sample cloud2",  # 添加的点云命名v1)  # 点云添加到的视图# 设置点云窗口(可移除对点云可视化没有影响)viewer.setPointCloudRenderingProperties(0,  # 设置点云点的大小1,  # 点云像素"sample cloud1",  # 识别特定点云v0)  # 在那个窗口可视化viewer.setPointCloudRenderingProperties(0,  # 设置点云点的大小1,  # 点云像素"sample cloud2",  # 识别特定点云v1)  # 在那个窗口可视化# viewer.addCoordinateSystem(1.0)  # 设置坐标轴 坐标轴的长度为1.0# 窗口建立while not viewer.wasStopped():viewer.spinOnce(10)def plane(cloud, normal_vector):coeffs = pcl.ModelCoefficients()  # 创建了一个模型系数对象coeffs.values.append(normal_vector[0])  # a = 0.0coeffs.values.append(normal_vector[1])  # b = 0.0coeffs.values.append(normal_vector[2])  # c = 1.0coeffs.values.append(normal_vector[3])  # d = 0.0# 创建滤波器proj = pcl.filters.ProjectInliers.PointXYZ()  # 过滤器对象 proj,用于将点云投影到一个模型上。proj.setModelType(0)  # 模型类型被设为 0,代表使用平面模型。proj.setInputCloud(cloud)  # 将cloud点云数据进行处理proj.setModelCoefficients(coeffs)  # 处理参数coeffscloud_projected = pcl.PointCloud.PointXYZ()  # 建立保存点云proj.filter(cloud_projected)  # 将投影结果保存return cloud_projectedif __name__ == '__main__':cloud1 = pcl.PointCloud.PointXYZ()reader = pcl.io.PCDReader()  # 设置读取对象reader.read('res/bunny.pcd', cloud1)  # 读取点云保存在cloud中# 调用函数,生成离散点x, y, z = cloud1.x, cloud1.y, cloud1.zN =  cloud1.size()# ------------------------构建系数矩阵-----------------------------A = np.array([[sum(x ** 2), sum(x * y), sum(x)],[sum(x * y), sum(y ** 2), sum(y)],[sum(x), sum(y), N]])B = np.array([[sum(x * z), sum(y * z), sum(z)]])# 求解X = np.linalg.solve(A, B.T)print('平面拟合结果为:z = %.3f * x + %.3f * y + %.3f' % (X[0], X[1], X[2]))a, b, c, d = X[0], X[1], -1, X[2]plane_cloud = plane(cloud1, [a, b, c, d])  # 获得投影后的点云数据# ------------------ 可视化点云 -----------------CloudShow(cloud1, plane_cloud) 

三、结果

1.左边原点云、右边最小二乘法拟合平面后点云投影

在这里插入图片描述

四、相关数据

最小二乘法拟合参考链接:最小二乘拟合平面(python/C++版) - 知乎 (zhihu.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/264823.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Elasticsearch:了解人工智能搜索算法

作者:来自 Elastic Jessica Taylor, Aditya Tripathi 人工智能工具无处不在,其原因并不神秘。 他们可以执行各种各样的任务并找到许多日常问题的解决方案。 但这些应用程序的好坏取决于它们的人工智能搜索算法。 简单来说,人工智能搜索算法是…

QT信号槽实现分析

1.宏定义 qt中引入了MOC来反射,编译阶段变成 MOC–>预处理–>编译–>汇编–>链接 1-1、Q_OBJECT 这个宏定义了一系列代码,包括元对象和处理的函数 #define Q_OBJECT \public: \QT_WARNING_PUSH \Q_OBJECT_NO_OVERRIDE_WARNING \static c…

位运算03 不用加号的加法[C++]

图源:文心一言 上机题目练习整理,位运算,供小伙伴们参考~🥝🥝 网页版目录在页面的右上角↗~🥝🥝 第1版:在力扣新手村刷题的记录~🧩🧩 编辑:梅…

二叉树与堆

目录 1.树概念及结构 1.1树的概念 1.2 树的相关概念 1.3 树的表示 1.4 树在实际中的运用(表示文件系统的目录树结构) 2.二叉树概念及结构 2.1概念 2.2现实中的二叉树: 2.3 特殊的二叉树: 2.4 二叉树的性质 2.5 二叉树的…

高性能 Kafka 及常见面试题

Kafka 是一种分布式的,基于发布/订阅的消息系统,原本开发自 LinkedIn,用作 LinkedIn 的事件流(Event Stream)和运营数据处理管道(Pipeline)的基础。 基础原理详解可见 Kafka 基本架构及原理 基础…

【大数据】Flink SQL 语法篇(四):Group 聚合、Over 聚合

Flink SQL 语法篇(四):Group 聚合、Over 聚合 1.Group 聚合1.1 基础概念1.2 窗口聚合和 Group 聚合1.3 SQL 语义1.4 Group 聚合支持 Grouping sets、Rollup、Cube 2.Over 聚合2.1 时间区间聚合2.2 行数聚合 1.Group 聚合 1.1 基础概念 Grou…

019 Spring Boot+Vue 电影院会员管理系统(源代码+数据库+文档)

部分代码地址: https://github.com/XinChennn/xc019-cinema 一、系统介绍 cinema项目是一套电影院会员管理系统,使用前后端分离架构开发包含管理员、会员管理、会员卡管理、电影票、消费记录、数据统计等模块 二、所用技术 后端技术栈: …

【Flink精讲】Flink组件通信

主要指三个进程中的通讯 CliFrontendYarnJobClusterEntrypointTaskExecutorRunner Flink内部节点之间的通讯使用Akka,比如JobManager和TaskManager之间。而operator之间的数据传输是利用Netty。 RPC是统称,Akka,Netty是实现 Akka与Ac…

热闹元宵进行中,如何利用VR全景展示民宿品牌形象?

错峰出游闹元宵,元宵节恰逢周末,而且还是春节假期返工之后的首个休息日,不少人都想通过短途度假来缓解“节后综合征”。两位数的特价机票、打折的各种酒店让你实现“旅行自由”,那么如何知道特价酒店服务好不好呢?先别…

Docker Volume

"Ice in my vein" Docker Volume(存储卷) 什么是存储卷? 存储卷就是: “将宿主机的本地文件系统中存在的某个目录,与容器内部的文件系统上的某一目录建立绑定关系”。 存储卷与容器本身的联合文件系统? 在宿主机上的这个与容器形成绑定关系…

实用区块链应用:去中心化投票系统的部署与实施

一、需求分析背景 随着技术的发展,传统的投票系统面临着越来越多的挑战,如中心化控制、透明度不足和易受攻击等问题。为了解决这些问题,我们可以利用区块链技术去中心化、透明性和安全性来构建一个去中心化投票系统。这样的系统能够确保投票过…

vue2.0及起步(前端面试知识积累)

1、需要了解的vue概要知识 1、vue是什么? 一套用于构建用户界面的渐进式JavaScript框架。 为什么vue被称为是渐进式JS框架? 答:Vue允许开发者在不同的项目中以渐进式的方式使用它,这种渐进式表现在以下的方面: 逐步采…

数据可视化--了解数据可视化和Excel数据可视化

目录 1.1科学可视化: 可视化是模式、关系、异常 1.2三基色原理: 三基色:红色、绿色和蓝色 1.3Excel数据可视化 1.3.1 excel数据分析-13个图表可视化技巧 1.3.2 excel数据分析-28个常用可视化图表(video) 1.3.3Excel可视化…

Java面试——锁

​ 公平锁: 是指多个线程按照申请锁的顺序来获取锁,有点先来后到的意思。在并发环境中,每个线程在获取锁时会先查看此锁维护的队列,如果为空,或者当前线程是等待队列的第一个,就占有锁,否则就会…

Apache Doris 发展历程、技术特性及云原生时代的未来规划

本文节选自《基础软件之路:企业级实践及开源之路》一书,该书集结了中国几乎所有主流基础软件企业的实践案例,由 28 位知名专家共同编写,系统剖析了基础软件发展趋势、四大基础软件(数据库、操作系统、编程语言与中间件…

js里面有引用传递吗?

一:什么是引用传递 引用传递是相对于值传递的。那什么是值传递呢?值传递就是在传递过程中再复制一份,然后再赋值给变量,例如: let a 2; let b a;在这个代码中,let b a; 就是一个值传递,首先…

深度学习手写字符识别:推理过程

说明 本篇博客主要是跟着B站中国计量大学杨老师的视频实战深度学习手写字符识别。 第一个深度学习实例手写字符识别 深度学习环境配置 可以参考下篇博客,网上也有很多教程,很容易搭建好深度学习的环境。 Windows11搭建GPU版本PyTorch环境详细过程 数…

设计模式(十) - 工厂方式模式

前言 在此前的设计模式(四)简单工厂模式中我们介绍了简单工厂模式,在这篇文章中我们来介绍下工厂方法模式,它同样是创建型设计模式,而且又有些类似,文章的末尾会介绍他们之间的不同。 1.工厂方法模式简介 …

小程序性能优化

背景 在开发小程序的过程中我们发现,小程序的经常会遇到性能问题,尤其是在微信开发者工具的时候更是格外的卡,经过排查发现,卡顿的页面有这么多的js代码需要加载,而且都是在进入这个页面的时候加载,这就会…

面试redis篇-10Redis集群方案-主从复制

在Redis中提供的集群方案总共有三种: 主从复制哨兵模式分片集群主从复制 单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。 主从数据同步原理 Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每…