中文文本分类(pytorch 实现)

import torch
import torch.nn as nn
import torchvision
from torchvision import transforms, datasets
import os, PIL, pathlib, warningswarnings.filterwarnings("ignore")  # 忽略警告信息# win10系统
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
train.csv 链接:https://pan.baidu.com/s/1Vnyvo5T5eSuzb0VwTsznqA?pwd=fqok 提取码:fqok 
import pandas as pd# 加载自定义中文数据集
train_data = pd.read_csv('D:/train.csv', sep='\t', header=None)
train_data.head()# 构建数据集迭代器
def coustom_data_iter(texts, labels):for x, y in zip(texts, labels):yield x, ytrain_iter = coustom_data_iter(train_data[0].values[:], train_data[1].values[:])

1.构建词典:

from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
import jieba# 中文分词方法
tokenizer = jieba.lcutdef yield_tokens(data_iter):for text, in data_iter:yield tokenizer(text)vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>"])
vocab.set_default_index(vocab["<unk>"])

 调用vocab(词汇表)对一个中文句子进行索引转换,这个句子被分词后得到的词汇列表会被转换成它们在词汇表中的索引。

print(vocab(['我', '想', '看', '书', '和', '你', '一起', '看', '电影', '的', '新款', '视频']))

生成一个标签列表,用于查看在数据集中所有可能的标签类型。 

label_name = list(set(train_data[1].values[:]))
print(label_name)

创建了两个lambda函数,一个用于将文本转换成词汇索引,另一个用于将标签文本转换成它们在label_name列表中的索引。

text_pipeline = lambda x: vocab(tokenizer(x))
label_pipeline = lambda x: label_name.index(x)print(text_pipeline('我想看新闻或者上网站看最新的游戏视频'))
print(label_pipeline('Video-Play'))

2.生成数据批次和迭代器

from torch.utils.data import DataLoaderdef collate_batch(batch):label_list, text_list, offsets = [], [], [0]for (_text, _label) in batch:# 标签列表label_list.append(label_pipeline(_label))# 文本列表processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)text_list.append(processed_text)# 偏移量,即词汇的起始位置offsets.append(processed_text.size(0))label_list = torch.tensor(label_list, dtype=torch.int64)text_list = torch.cat(text_list)offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)  # 累计偏移量dim中维度元素的累计和return text_list.to(device), label_list.to(device), offsets.to(device)# 数据加载器,调用示例
dataloader = DataLoader(train_iter,batch_size=8,shuffle=False,collate_fn=collate_batch)

collate_batch函数用于处理数据加载器中的批次。它接收一个批次的数据,处理它,并返回适合模型训练的数据格式。
在这个函数内部,它遍历批次中的每个文本和标签对,将标签添加到label_list,将文本通过text_pipeline函数处理后转换为tensor,并添加到text_list。
offsets列表用于存储每个文本的长度,这对于后续的文本处理非常有用,尤其是当你需要知道每个文本在拼接的大tensor中的起始位置时。
text_list用torch.cat进行拼接,形成一个连续的tensor。
offsets列表的最后一个元素不包括,然后使用cumsum函数在第0维计算累积和,这为每个序列提供了一个累计的偏移量。

3.搭建模型与初始化

from torch import nnclass TextClassificationModel(nn.Module):def __init__(self, vocab_size, embed_dim, num_class):super(TextClassificationModel, self).__init__()self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=False)self.fc = nn.Linear(embed_dim, num_class)self.init_weights()def init_weights(self):initrange = 0.5self.embedding.weight.data.uniform_(-initrange, initrange)self.fc.weight.data.uniform_(-initrange, initrange)self.fc.bias.data.zero_()def forward(self, text, offsets):embedded = self.embedding(text, offsets)return self.fc(embedded)num_class = len(label_name)  # 类别数,根据label_name的长度确定
vocab_size = len(vocab)      # 词汇表的大小,根据vocab的长度确定
em_size = 64                 # 嵌入向量的维度设置为64
model = TextClassificationModel(vocab_size, em_size, num_class).to(device)  # 创建模型实例并移动到计算设备

4.模型训练及评估函数

train 和 evaluate分别用于训练和评估文本分类模型。

训练函数 train 的工作流程如下:

将模型设置为训练模式。
初始化总准确率、训练损失和总计数变量。
记录训练开始的时间。
遍历数据加载器,对每个批次:
进行预测。
清零优化器的梯度。
计算损失(使用一个损失函数,例如交叉熵)。
反向传播计算梯度。
通过梯度裁剪防止梯度爆炸。
执行一步优化器更新模型权重。
更新总准确率和总损失。
每隔一定间隔,打印训练进度和统计信息。
评估函数 evaluate 的工作流程如下:

将模型设置为评估模式。
初始化总准确率和总损失。
不计算梯度(为了节省内存和计算资源)。
遍历数据加载器,对每个批次:
进行预测。
计算损失。
更新总准确率和总损失。
返回整体的准确率和平均损失。
代码实现:

import timedef train(dataloader):model.train()  # 切换到训练模式total_acc, train_loss, total_count = 0, 0, 0log_interval = 50start_time = time.time()for idx, (text, label, offsets) in enumerate(dataloader):predicted_label = model(text, offsets)optimizer.zero_grad()  # 梯度归零loss = criterion(predicted_label, label)  # 计算损失loss.backward()  # 反向传播torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)  # 梯度裁剪optimizer.step()  # 优化器更新权重# 记录acc和losstotal_acc += (predicted_label.argmax(1) == label).sum().item()train_loss += loss.item()total_count += label.size(0)if idx % log_interval == 0 and idx > 0:elapsed = time.time() - start_timeprint('| epoch {:3d} | {:5d}/{:5d} batches ''| accuracy {:8.3f} | loss {:8.5f}'.format(epoch, idx, len(dataloader),total_acc/total_count, train_loss/total_count))total_acc, train_loss, total_count = 0, 0, 0start_time = time.time()def evaluate(dataloader):model.eval()  # 切换到评估模式total_acc, total_count = 0, 0with torch.no_grad():for idx, (text, label, offsets) in enumerate(dataloader):predicted_label = model(text, offsets)loss = criterion(predicted_label, label)  # 计算losstotal_acc += (predicted_label.argmax(1) == label).sum().item()total_count += label.size(0)return total_acc/total_count, total_count

5.模型训练
设置训练的轮数、学习率和批次大小。
定义交叉熵损失函数、随机梯度下降优化器和学习率调度器。
将训练数据转换为一个map样式的数据集,并将其分成训练集和验证集。
创建训练和验证的数据加载器。
开始训练循环,每个epoch都会训练模型并在验证集上评估模型的准确率和损失。
如果验证准确率没有提高,则按计划降低学习率。
打印每个epoch结束时的统计信息,包括时间、准确率、损失和学习率。

from torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset
# 参数设置
EPOCHS = 10  # epoch数量
LR = 5  # 学习速率
BATCH_SIZE = 64  # 训练的batch大小# 设置损失函数、优化器和调度器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)
total_accu = None# 准备数据集
train_iter = coustom_data_iter(train_data[0].values[:], train_data[1].values[:])
train_dataset = to_map_style_dataset(train_iter)split_train_, split_valid_ = random_split(train_dataset,[int(len(train_dataset)*0.8), int(len(train_dataset)*0.2)])train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE,shuffle=True, collate_fn=collate_batch)valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE,shuffle=True, collate_fn=collate_batch)# 训练循环
for epoch in range(1, EPOCHS + 1):epoch_start_time = time.time()train(train_dataloader)val_acc, val_loss = evaluate(valid_dataloader)# 更新学习率的策略lr = optimizer.state_dict()['param_groups'][0]['lr']if total_accu is not None and total_accu > val_acc:scheduler.step()else:total_accu = val_accprint('-' * 69)print('| end of epoch {:3d} | time: {:4.2f}s | ''valid accuracy {:4.3f} | valid loss {:4.3f} | lr {:4.6f}'.format(epoch, time.time() - epoch_start_time, val_acc, val_loss, lr))print('-' * 69)

运行结果:

| epoch   1 |    50/  152 batches | accuracy    0.423 | loss  0.03079
| epoch   1 |   100/  152 batches | accuracy    0.700 | loss  0.01912
| epoch   1 |   150/  152 batches | accuracy    0.776 | loss  0.01347
---------------------------------------------------------------------
| end of epoch   1 | time: 1.53s | valid accuracy 0.777 | valid loss 2420.000 | lr 5.000000
| epoch   2 |    50/  152 batches | accuracy    0.812 | loss  0.01056
| epoch   2 |   100/  152 batches | accuracy    0.843 | loss  0.00871
| epoch   2 |   150/  152 batches | accuracy    0.844 | loss  0.00846
---------------------------------------------------------------------
| end of epoch   2 | time: 1.45s | valid accuracy 0.842 | valid loss 2420.000 | lr 5.000000
| epoch   3 |    50/  152 batches | accuracy    0.883 | loss  0.00653
| epoch   3 |   100/  152 batches | accuracy    0.879 | loss  0.00634
| epoch   3 |   150/  152 batches | accuracy    0.883 | loss  0.00627
---------------------------------------------------------------------
| end of epoch   3 | time: 1.44s | valid accuracy 0.865 | valid loss 2420.000 | lr 5.000000
| epoch   4 |    50/  152 batches | accuracy    0.912 | loss  0.00498
| epoch   4 |   100/  152 batches | accuracy    0.906 | loss  0.00495
| epoch   4 |   150/  152 batches | accuracy    0.915 | loss  0.00461
---------------------------------------------------------------------
| end of epoch   4 | time: 1.50s | valid accuracy 0.876 | valid loss 2420.000 | lr 5.000000
| epoch   5 |    50/  152 batches | accuracy    0.935 | loss  0.00386
| epoch   5 |   100/  152 batches | accuracy    0.934 | loss  0.00390
| epoch   5 |   150/  152 batches | accuracy    0.932 | loss  0.00362
---------------------------------------------------------------------
| end of epoch   5 | time: 1.59s | valid accuracy 0.881 | valid loss 2420.000 | lr 5.000000
| epoch   6 |    50/  152 batches | accuracy    0.947 | loss  0.00313
| epoch   6 |   100/  152 batches | accuracy    0.949 | loss  0.00307
| epoch   6 |   150/  152 batches | accuracy    0.949 | loss  0.00286
---------------------------------------------------------------------
| end of epoch   6 | time: 1.68s | valid accuracy 0.891 | valid loss 2420.000 | lr 5.000000
| epoch   7 |    50/  152 batches | accuracy    0.960 | loss  0.00243
| epoch   7 |   100/  152 batches | accuracy    0.963 | loss  0.00224
| epoch   7 |   150/  152 batches | accuracy    0.959 | loss  0.00252
---------------------------------------------------------------------
| end of epoch   7 | time: 1.53s | valid accuracy 0.892 | valid loss 2420.000 | lr 5.000000
| epoch   8 |    50/  152 batches | accuracy    0.972 | loss  0.00186
| epoch   8 |   100/  152 batches | accuracy    0.974 | loss  0.00184
| epoch   8 |   150/  152 batches | accuracy    0.967 | loss  0.00201
---------------------------------------------------------------------
| end of epoch   8 | time: 1.43s | valid accuracy 0.895 | valid loss 2420.000 | lr 5.000000
| epoch   9 |    50/  152 batches | accuracy    0.981 | loss  0.00138
| epoch   9 |   100/  152 batches | accuracy    0.977 | loss  0.00165
| epoch   9 |   150/  152 batches | accuracy    0.980 | loss  0.00147
---------------------------------------------------------------------
| end of epoch   9 | time: 1.48s | valid accuracy 0.900 | valid loss 2420.000 | lr 5.000000
| epoch  10 |    50/  152 batches | accuracy    0.987 | loss  0.00117
| epoch  10 |   100/  152 batches | accuracy    0.985 | loss  0.00121
| epoch  10 |   150/  152 batches | accuracy    0.984 | loss  0.00121
---------------------------------------------------------------------
| end of epoch  10 | time: 1.45s | valid accuracy 0.902 | valid loss 2420.000 | lr 5.000000
---------------------------------------------------------------------

6.模型评估

test_acc, test_loss = evaluate(valid_dataloader)
print('模型的准确率: {:5.4f}'.format(test_acc))

7.模型测试

def predict(text, text_pipeline):with torch.no_grad():text = torch.tensor(text_pipeline(text))output = model(text, torch.tensor([0]))return output.argmax(1).item()# 示例文本字符串
# ex_text_str = "例句输入——这是一个待预测类别的示例句子"
ex_text_str = "这不仅影响到我们的方案是否可行13号的"model = model.to("cpu")print("该文本的类别是: %s" % label_name[predict(ex_text_str, text_pipeline)])

8.全部代码(部分修改):

import torch
import torch.nn as nn
import torchvision
from torchvision import transforms, datasets
import os, PIL, pathlib, warningswarnings.filterwarnings("ignore")  # 忽略警告信息# win10系统
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)import pandas as pd# 加载自定义中文数据集
train_data = pd.read_csv('D:/train.csv', sep='\t', header=None)
train_data.head()# 构建数据集迭代器
def custom_data_iter(texts, labels):for x, y in zip(texts, labels):yield x, ytrain_iter = custom_data_iter(train_data[0].values[:], train_data[1].values[:])from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
import jieba# 中文分词方法
tokenizer = jieba.lcutdef yield_tokens(data_iter):for text,_ in data_iter:yield tokenizer(text)vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>"])
vocab.set_default_index(vocab["<unk>"])print(vocab(['我', '想', '看', '书', '和', '你', '一起', '看', '电影', '的', '新款', '视频']))label_name = list(set(train_data[1].values[:]))
print(label_name)text_pipeline = lambda x: vocab(tokenizer(x))
label_pipeline = lambda x: label_name.index(x)print(text_pipeline('我想看新闻或者上网站看最新的游戏视频'))
print(label_pipeline('Video-Play'))from torch.utils.data import DataLoaderdef collate_batch(batch):label_list, text_list, offsets = [], [], [0]for (_text, _label) in batch:# 标签列表label_list.append(label_pipeline(_label))# 文本列表processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)text_list.append(processed_text)# 偏移量,即词汇的起始位置offsets.append(processed_text.size(0))label_list = torch.tensor(label_list, dtype=torch.int64)text_list = torch.cat(text_list)offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)  # 累计偏移量dim中维度元素的累计和return text_list.to(device), label_list.to(device), offsets.to(device)# 数据加载器,调用示例
dataloader = DataLoader(train_iter,batch_size=8,shuffle=False,collate_fn=collate_batch)from torch import nnclass TextClassificationModel(nn.Module):def __init__(self, vocab_size, embed_dim, num_class):super(TextClassificationModel, self).__init__()self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=False)self.fc = nn.Linear(embed_dim, num_class)self.init_weights()def init_weights(self):initrange = 0.5self.embedding.weight.data.uniform_(-initrange, initrange)self.fc.weight.data.uniform_(-initrange, initrange)self.fc.bias.data.zero_()def forward(self, text, offsets):embedded = self.embedding(text, offsets)return self.fc(embedded)
num_class = len(label_name)
vocab_size = len(vocab)
em_size = 64
model = TextClassificationModel(vocab_size, em_size, num_class).to(device)import timedef train(dataloader):model.train()  # 切换到训练模式total_acc, train_loss, total_count = 0, 0, 0log_interval = 50start_time = time.time()for idx, (text, label, offsets) in enumerate(dataloader):predicted_label = model(text, offsets)optimizer.zero_grad()  # 梯度归零loss = criterion(predicted_label, label)  # 计算损失loss.backward()  # 反向传播torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)  # 梯度裁剪optimizer.step()  # 优化器更新权重# 记录acc和losstotal_acc += (predicted_label.argmax(1) == label).sum().item()train_loss += loss.item()total_count += label.size(0)if idx % log_interval == 0 and idx > 0:elapsed = time.time() - start_timeprint('| epoch {:3d} | {:5d}/{:5d} batches ''| accuracy {:8.3f} | loss {:8.5f}'.format(epoch, idx, len(dataloader),total_acc/total_count, train_loss/total_count))total_acc, train_loss, total_count = 0, 0, 0start_time = time.time()def evaluate(dataloader):model.eval()  # 切换到评估模式total_acc, total_count = 0, 0with torch.no_grad():for idx, (text, label, offsets) in enumerate(dataloader):predicted_label = model(text, offsets)loss = criterion(predicted_label, label)  # 计算losstotal_acc += (predicted_label.argmax(1) == label).sum().item()total_count += label.size(0)return total_acc/total_count, total_countfrom torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset
# 参数设置
EPOCHS = 10  # epoch数量
LR = 5  # 学习速率
BATCH_SIZE = 64  # 训练的batch大小# 设置损失函数、优化器和调度器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)
total_accu = None# 准备数据集
train_iter = custom_data_iter(train_data[0].values[:], train_data[1].values[:])
train_dataset = to_map_style_dataset(train_iter)split_train_, split_valid_ = random_split(train_dataset,[int(len(train_dataset)*0.8), int(len(train_dataset)*0.2)])train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE,shuffle=True, collate_fn=collate_batch)valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE,shuffle=True, collate_fn=collate_batch)# 训练循环
for epoch in range(1, EPOCHS + 1):epoch_start_time = time.time()train(train_dataloader)val_acc, val_loss = evaluate(valid_dataloader)# 更新学习率的策略lr = optimizer.state_dict()['param_groups'][0]['lr']if total_accu is not None and total_accu > val_acc:scheduler.step()else:total_accu = val_accprint('-' * 69)print('| end of epoch {:3d} | time: {:4.2f}s | ''valid accuracy {:4.3f} | valid loss {:4.3f} | lr {:4.6f}'.format(epoch, time.time() - epoch_start_time, val_acc, val_loss, lr))print('-' * 69)test_acc, test_loss = evaluate(valid_dataloader)
print('模型的准确率: {:5.4f}'.format(test_acc))def predict(text, text_pipeline):with torch.no_grad():text = torch.tensor(text_pipeline(text))output = model(text, torch.tensor([0]))return output.argmax(1).item()# 示例文本字符串
# ex_text_str = "例句输入——这是一个待预测类别的示例句子"
ex_text_str = "这不仅影响到我们的方案是否可行13号的"model = model.to("cpu")print("该文本的类别是: %s" % label_name[predict(ex_text_str, text_pipeline)])

9.代码改进及优化

9.1优化器: 尝试不同的优化算法,如Adam、RMSprop替换原来的SGD优化器部分
9.1.1使用Adam优化器:
import torch
import torch.nn as nn
import torchvision
from torchvision import transforms, datasets
import os, PIL, pathlib, warningswarnings.filterwarnings("ignore")  # 忽略警告信息# win10系统
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)import pandas as pd# 加载自定义中文数据集
train_data = pd.read_csv('D:/train.csv', sep='\t', header=None)
train_data.head()# 构建数据集迭代器
def custom_data_iter(texts, labels):for x, y in zip(texts, labels):yield x, ytrain_iter = custom_data_iter(train_data[0].values[:], train_data[1].values[:])from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
import jieba# 中文分词方法
tokenizer = jieba.lcutdef yield_tokens(data_iter):for text,_ in data_iter:yield tokenizer(text)vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>"])
vocab.set_default_index(vocab["<unk>"])print(vocab(['我', '想', '看', '书', '和', '你', '一起', '看', '电影', '的', '新款', '视频']))label_name = list(set(train_data[1].values[:]))
print(label_name)text_pipeline = lambda x: vocab(tokenizer(x))
label_pipeline = lambda x: label_name.index(x)print(text_pipeline('我想看新闻或者上网站看最新的游戏视频'))
print(label_pipeline('Video-Play'))from torch.utils.data import DataLoaderdef collate_batch(batch):label_list, text_list, offsets = [], [], [0]for (_text, _label) in batch:# 标签列表label_list.append(label_pipeline(_label))# 文本列表processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)text_list.append(processed_text)# 偏移量,即词汇的起始位置offsets.append(processed_text.size(0))label_list = torch.tensor(label_list, dtype=torch.int64)text_list = torch.cat(text_list)offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)  # 累计偏移量dim中维度元素的累计和return text_list.to(device), label_list.to(device), offsets.to(device)# 数据加载器,调用示例
dataloader = DataLoader(train_iter,batch_size=8,shuffle=False,collate_fn=collate_batch)from torch import nnclass TextClassificationModel(nn.Module):def __init__(self, vocab_size, embed_dim, num_class):super(TextClassificationModel, self).__init__()self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=False)self.fc = nn.Linear(embed_dim, num_class)self.init_weights()def init_weights(self):initrange = 0.5self.embedding.weight.data.uniform_(-initrange, initrange)self.fc.weight.data.uniform_(-initrange, initrange)self.fc.bias.data.zero_()def forward(self, text, offsets):embedded = self.embedding(text, offsets)return self.fc(embedded)
num_class = len(label_name)
vocab_size = len(vocab)
em_size = 64
model = TextClassificationModel(vocab_size, em_size, num_class).to(device)import timedef train(dataloader):model.train()  # 切换到训练模式total_acc, train_loss, total_count = 0, 0, 0log_interval = 50start_time = time.time()for idx, (text, label, offsets) in enumerate(dataloader):predicted_label = model(text, offsets)optimizer.zero_grad()  # 梯度归零loss = criterion(predicted_label, label)  # 计算损失loss.backward()  # 反向传播torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)  # 梯度裁剪optimizer.step()  # 优化器更新权重# 记录acc和losstotal_acc += (predicted_label.argmax(1) == label).sum().item()train_loss += loss.item()total_count += label.size(0)if idx % log_interval == 0 and idx > 0:elapsed = time.time() - start_timeprint('| epoch {:3d} | {:5d}/{:5d} batches ''| accuracy {:8.3f} | loss {:8.5f}'.format(epoch, idx, len(dataloader),total_acc/total_count, train_loss/total_count))total_acc, train_loss, total_count = 0, 0, 0start_time = time.time()def evaluate(dataloader):model.eval()  # 切换到评估模式total_acc, total_count = 0, 0with torch.no_grad():for idx, (text, label, offsets) in enumerate(dataloader):predicted_label = model(text, offsets)loss = criterion(predicted_label, label)  # 计算losstotal_acc += (predicted_label.argmax(1) == label).sum().item()total_count += label.size(0)return total_acc/total_count, total_countfrom torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset
# 参数设置
EPOCHS = 10  # epoch数量
LR = 5  # 学习速率
BATCH_SIZE = 64  # 训练的batch大小# 设置损失函数、优化器和调度器
criterion = torch.nn.CrossEntropyLoss()
#optimizer = torch.optim.SGD(model.parameters(), lr=LR)
optimizer = torch.optim.Adam(model.parameters(), lr=LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)
total_accu = None# 准备数据集
train_iter = custom_data_iter(train_data[0].values[:], train_data[1].values[:])
train_dataset = to_map_style_dataset(train_iter)split_train_, split_valid_ = random_split(train_dataset,[int(len(train_dataset)*0.8), int(len(train_dataset)*0.2)])train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE,shuffle=True, collate_fn=collate_batch)valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE,shuffle=True, collate_fn=collate_batch)# 训练循环
for epoch in range(1, EPOCHS + 1):epoch_start_time = time.time()train(train_dataloader)val_acc, val_loss = evaluate(valid_dataloader)# 更新学习率的策略lr = optimizer.state_dict()['param_groups'][0]['lr']if total_accu is not None and total_accu > val_acc:scheduler.step()else:total_accu = val_accprint('-' * 69)print('| end of epoch {:3d} | time: {:4.2f}s | ''valid accuracy {:4.3f} | valid loss {:4.3f} | lr {:4.6f}'.format(epoch, time.time() - epoch_start_time, val_acc, val_loss, lr))print('-' * 69)test_acc, test_loss = evaluate(valid_dataloader)
print('模型的准确率: {:5.4f}'.format(test_acc))def predict(text, text_pipeline):with torch.no_grad():text = torch.tensor(text_pipeline(text))output = model(text, torch.tensor([0]))return output.argmax(1).item()# 示例文本字符串
# ex_text_str = "例句输入——这是一个待预测类别的示例句子"
ex_text_str = "这不仅影响到我们的方案是否可行13号的"model = model.to("cpu")print("该文本的类别是: %s" % label_name[predict(ex_text_str, text_pipeline)])

需要下载的库

pip install jieba -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install torchtext -i https://pypi.tuna.tsinghua.edu.cn/simple


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/267502.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【yolov8部署实战】VS2019环境下使用Onnxruntime环境部署yolo项目|含源码

一、前言 部署yolo项目&#xff0c;是我这几个月以来做的事情&#xff0c;最近打算把这几个月试过的方法&#xff0c;踩过的坑&#xff0c;以博客的形式&#xff0c;分享一下。关于下面动态中讲到的如何用opencv部署&#xff0c;我在上一篇博客中已经详细讲到了&#xff1a;【…

JavaWeb 自己给服务器安装SQL Server数据库遇到的坑

之前买的虚拟主机免费送了一个SQL Server数据库&#xff0c;由于服务器提供商今年下架我用的那款虚拟主机产品&#xff0c;所以数据库也被收回了。我买了阿里云云服务器&#xff0c;但是没有数据库&#xff0c;于是自己装了一个SQL Server数据库&#xff0c;总结一下遇到的坑。…

el-input组件当数据为空时, 边框变红,并提示错误信息

1&#xff0c;样式 初始&#xff1a; 当不输入口令&#xff0c; 点击确定时&#xff1a; 2, 思路 主要是使用动态类的方式。 先设置输入框变红的样式以及提示文字的样式class 对于样式class 用变量来控制是否奏效。 3&#xff0c; 代码实现 //html&#xff1a; <div cl…

【leetcode】 剑指 Offer学习计划(java版本含注释)(下)

目录 前言第十六天&#xff08;排序&#xff09;剑指 Offer 45. 把数组排成最小的数&#xff08;中等&#xff09;剑指 Offer 61. 扑克牌中的顺子&#xff08;简单&#xff09; 第十七天&#xff08;排序&#xff09;剑指 Offer 40. 最小的k个数&#xff08;简单&#xff09; 第…

NCDA设计大赛获奖作品剖析:UI设计如何脱颖而出?

第十二届大赛简介 - 未来设计师全国高校数字艺术设计大赛&#xff08;NCDA&#xff09;开始啦&#xff01;视觉传达设计命题之一: ui 设计&#xff0c;你想知道的都在这里。为了让大家更好的参加这次比赛&#xff0c;本文特别为大家整理了以往NCDA大赛 UI 设计的优秀获奖作品&a…

QoS简单配置案例

1、两边两个方向做相同的配置&#xff1a;入口复杂流分类用mqc方式配置&#xff0c;ds内设备入口配简单流分类。 2、两边两个方法做拥塞管理配置&#xff0c;拥塞管理配置思路&#xff1a; 拥塞管理的两种配置方法&#xff08;全部用一种也可以&#xff0c;这里学习就用了两种…

算法修炼-动态规划之路径问题(1)

62. 不同路径 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a;选定一个网格为终点&#xff0c;走到这个网格的所有走法就是这个网格的上面一个网格的所有走法加上这个网格左边一个网格的所有走法&#xff0c;然后做好初始化工作就行。 class Solution { public:int…

Linux线程池

前言 线程池是一种管理线程的机制&#xff0c;它可以在需要时自动创建和销毁线程&#xff0c;以及分配和回收线程资源。线程池的主要优点是减少了频繁创建和销毁线程所带来的开销&#xff0c;提高了系统的稳定性和可扩展性。此外&#xff0c;线程池还可以有效地控制线程的数量&…

贝叶斯优化CNN分类(matlab代码)

贝叶斯优化CNN分类matlab代码 数据为Excel分类数据集数据。 数据集划分为训练集、验证集、测试集&#xff0c;比例为8:1:1 数据处理: 在数据加载后&#xff0c;对数据进行了划分&#xff0c;包括训练集、验证集和测试集&#xff0c;这有助于评估模型的泛化能力。 数据标准化…

美梦从舒适开始,康姿百德床垫为睡眠健康护航

在当今社会&#xff0c;高质量的睡眠已成为人们对生活品质的追求&#xff0c;对床垫的选择也变得越来越讲究。在我们繁忙的生活中&#xff0c;一张优质的床垫不仅是我们舒适休息的保障&#xff0c;更是保持健康生活方式的重要部分。康姿百德床垫&#xff0c;作为市场上的佼佼者…

gpt批量原创文章生成器,不限制内容的生成器

在当今的数字化时代&#xff0c;内容创作是网站持续发展的重要组成部分。然而&#xff0c;对于拥有大量内容需求的网站来说&#xff0c;手动创作文章可能会耗费大量时间和精力。为了解决这一问题&#xff0c;许多GPT&#xff08;生成式预训练模型&#xff09;文章生成软件应运而…

瑞_Redis_Redis命令

文章目录 1 Redis命令Redis数据结构Redis 的 key 的层级结构1.0 Redis通用命令1.0.1 KEYS1.0.2 DEL1.0.3 EXISTS1.0.4 EXPIRE1.0.5 TTL 1.1 String类型1.1.0 String类型的常见命令1.1.1 SET 和 GET1.1.2 MSET 和 MGET1.1.3 INCR和INCRBY和DECY1.1.4 SETNX1.1.5 SETEX 1.2 Hash类…

python封装,继承,复写详解

目录 1.封装 2.继承 复写和使用父类成员 1.封装 class phone:__voltage 0.5def __keepsinglecore(self):print("单核运行")def callby5g(self):if self.__voltage > 1:print("5g通话开启")else:self.__keepsinglecore()print("不能开启5g通…

‘grafana.ini‘ is read only ‘defaults.ini‘ is read only

docker安装grafana 关闭匿名登录情况下的免密登录遇到问题 grafana.ini is read only defaults.ini is read only 参考回答&#xff08;Grafana.ini giving me the creeps - #2 by bartweemaels - Configuration - Grafana Labs Community Forums&#xff09; 正确启动脚本 …

mac苹果电脑c盘满了如何清理内存?2024最新操作教程分享

苹果电脑用户经常会遇到麻烦:内置存储器(即C盘)空间不断缩小&#xff0c;电脑运行缓慢。在这种情况下&#xff0c;苹果电脑c盘满了怎么清理&#xff1f;如何有效清理和优化存储空间&#xff0c;提高计算机性能&#xff1f;成了一个重要的问题。今天&#xff0c;我想给大家详细介…

鸿蒙岗位需求突增!移动端、PC端、IoT到底该怎么选?

“2024年是原生鸿蒙的关键一年&#xff0c;我们要加快推进各类鸿蒙原生应用的开发&#xff0c;集中打赢技术底座和三方生态两大最艰巨的战斗。”这是余承东在新年信中表达的决心。 随后在1月18日举行的鸿蒙生态千帆启航仪式上&#xff0c;华为宣布 HarmonyOS NEXT 鸿蒙星河版系…

aop监控spring cloud接口超时,并记录到数据库

引入pom <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4.0.0…

【论文精读】StableSR

摘要 将Diffusion先验嵌入到合成模型&#xff08;如Stable Diffusion&#xff09;的模式在图像视频编辑领域取得了良好的结果。本文提出StableSR&#xff0c;将Diffusion先验嵌入到超分辨率&#xff08;SR&#xff09;&#xff0c;且不对图像退化模式做明确假设。具体有&#x…

编译链接实战(25)ThreadSanitizer检测线程安全

ThreadSanitizer&#xff08;又称为TSan&#xff09;是一个用于C/C的数据竞争检测器。在并发系统中&#xff0c;数据竞争是最常见且最难调试的错误类型之一。当两个线程并发访问同一个变量&#xff0c;并且至少有一个访问是写操作时&#xff0c;就会发生数据竞争。C11标准正式将…

JAVA面向对象高级部分—多态

面向对象高级部分—多态 认识多态 对象多态&#xff0c;对象既可以指向老师对象&#xff0c;也可以指向学生对象。 注意事项&#xff1a; 成员变量不谈多态&#xff0c;编译看左边&#xff0c;运行看左边 成员变量编译的是父类People&#xff0c;所以编译的是左边的People&a…