【探索AI】十二 深度学习之第2周:深度神经网络(一)深度神经网络的结构与设计

第2周:深度神经网络

将从以下几个部分开始学习,第1周的概述有需要详细讲解的的同学自行百度;

深度神经网络的结构与设计
深度学习的参数初始化策略
过拟合与正则化技术
批标准化与Dropout
实践:使用深度学习框架构建简单的深度神经网络,并进行训练与评估

(一)深度神经网络的结构与设计

一. 神经网络基础回顾

在这里插入图片描述

二. 深度神经网络结构

  1. 深度网络
    引入深度概念:

深度神经网络由多个隐藏层组成,可以进行多层次的特征抽取和表示学习。
随着层数增加,网络可以学习到更加抽象和复杂的特征。

层与层之间的连接方式:

全连接:每个神经元都与上一层的所有神经元相连,参数量大。
卷积连接:通过卷积操作提取局部特征,共享权重减少参数量。
池化操作:减少特征图大小、参数量,保留关键信息。

  1. 常见结构
    卷积神经网络(CNN):

适用于图像数据处理:通过卷积层和池化层提取空间特征。
包括卷积层、池化层、全连接层等,常用于图像分类、目标检测等任务。

循环神经网络(RNN):

适用于序列数据处理:具有记忆功能,能处理不定长序列数据。
可以捕捉序列中的时间依赖关系,常用于自然语言处理、时间序列预测等领域。

注意力机制(Attention):

用于处理不定长序列数据:允许模型在不同时间步关注输入序列的不同部分。
提高模型对长序列的处理能力,常用于机器翻译、语音识别等任务。

三. 神经网络设计与调参

  1. 网络设计要点
    深度与宽度的选择:

深度:增加深度可提高网络表达能力,但也增加训练难度和计算成本。根据任务复杂度和数据量进行选择。
宽度:每层神经元数量的选择影响网络的表示能力,通常在实践中会通过试验选择最佳宽度。

正则化与批标准化的使用:

正则化:如L1/L2正则化、Dropout等可以减少过拟合问题。
批标准化:减少内部协变量偏移,加速训练过程,提高模型泛化能力。
梯度消失与爆炸问题的处理:

梯度消失:通过使用恰当的激活函数(如ReLU)、初始化权重(如He初始化)、或者使用残差连接(如ResNet)来缓解。
梯度爆炸:梯度裁剪、合适的权重初始化(如Xavier初始化)等方法可以解决。

  1. 超参数调优
    学习率、批大小、激活函数的选择:

学习率:影响模型收敛速度和性能,可以采用学习率衰减策略。
批大小:影响梯度更新频率和内存占用,选择适当大小有助于加快训练。
激活函数:根据任务需求选择适当的激活函数。

交叉验证、网格搜索等调参方法:

交叉验证:评估模型泛化能力,选择最佳超参数组合。
网格搜索:通过遍历不同超参数组合来寻找最优模型配置。

四. 实践与案例分析

  1. 实践项目:文本情感分类
    项目描述:

任务:对电影评论进行情感分类,判断评论是正面还是负面情感。
数据集:使用IMDb数据集,包含大量电影评论和对应情感标签。
模型:使用卷积神经网络(CNN)进行文本分类。
设计过程:

数据预处理:文本分词、构建词典,将文本转换为词向量表示。
搭建CNN模型:包括卷积层、池化层和全连接层。
模型训练:选择合适的损失函数(如交叉熵损失)、优化器(如Adam)、正则化方法(如Dropout)进行训练。

代码示例:

数据预处理:

# 文本分词及构建词典
tokenizer = Tokenizer(num_words=max_words)
tokenizer.fit_on_texts(texts)
sequences = tokenizer.texts_to_sequences(texts)
word_index = tokenizer.word_index# 将文本转换为词向量表示
data = pad_sequences(sequences, maxlen=maxlen)
labels = np.asarray(labels)

搭建CNN模型:

model = Sequential()
model.add(Embedding(max_words, embedding_dim, input_length=maxlen))
model.add(Conv1D(filters, kernel_size, activation='relu'))
model.add(GlobalMaxPooling1D())
model.add(Dense(hidden_dim, activation='relu'))
model.add(Dense(1, activation='sigmoid'))model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

模型训练:

model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_val, y_val))
  1. 案例分析:AlphaGo
    案例描述:
    任务:围棋对弈。
    网络结构:使用深度残差网络(ResNet)和卷积神经网络(CNN)。
    调参策略:
    网络结构设计:采用深度残差网络和CNN结构,利用残差连接减少梯度消失问题。
    强化学习算法:采用蒙特卡洛树搜索(Monte Carlo Tree Search, MCTS),结合策略价值网络进行决策。
    自我对弈:通过大量自我对弈生成数据,用于训练深度神经网络模型。

代码示例:
网络结构设计:

# 深度残差网络(ResNet)部分
def residual_block(input_tensor, filters, kernel_size):x = Conv2D(filters, kernel_size, padding='same')(input_tensor)x = BatchNormalization()(x)x = Activation('relu')(x)x = Conv2D(filters, kernel_size, padding='same')(x)x = BatchNormalization()(x)x = Add()([x, input_tensor])x = Activation('relu')(x)return x# 卷积神经网络(CNN)部分
def convolutional_block(input_tensor, filters, kernel_size):x = Conv2D(filters, kernel_size, padding='same')(input_tensor)x = BatchNormalization()(x)x = Activation('relu')(x)return x

强化学习算法(蒙特卡洛树搜索):

def monte_carlo_tree_search(game_state):root_node = Node(state=game_state)for i in range(num_simulations):node = root_nodewhile not node.is_leaf():node = node.select_child()if node.visits > 0:action = node.get_best_action()else:action = random.choice(game_state.get_legal_actions())new_state = game_state.play_action(action)reward = simulate(new_state)node.update(reward)return root_node.get_best_action()

自我对弈:

def self_play():game_state = initialize_game_state()while not game_state.is_terminal():action = monte_carlo_tree_search(game_state)game_state = game_state.play_action(action)final_reward = calculate_reward(game_state)return final_reward

五.总结与展望

  1. 总结:
    深度神经网络的结构与设计要点:
    神经网络结构:包括输入层、隐藏层和输出层,隐藏层可以是卷积层、循环层或全连接层等。
    激活函数:用于引入非线性因素,常见的激活函数有ReLU、Sigmoid和Tanh等。
    损失函数:用于衡量模型预测输出与实际标签之间的差异,常见的损失函数有交叉熵损失和均方误差等。
    优化器:用于调整模型参数以最小化损失函数,常见的优化器有SGD、Adam和RMSprop等。
    正则化:包括L1正则化、L2正则化和Dropout等方法,用于防止过拟合。

  2. 展望:
    深度学习领域的发展趋势与挑战:
    自动化与自适应性:未来深度学习模型将更加自动化和自适应,能够适应不同任务和数据的特点。
    多模态融合:深度学习将更多地涉及多模态数据(文本、图像、语音等)的融合与处理。
    可解释性:解释深度学习模型决策的可解释性将成为重要研究方向,以提高模型的可信度和应用范围。
    边缘计算:将深度学习模型部署到边缘设备上,实现智能化的边缘计算应用。
    数据隐私与安全:在深度学习中注重数据隐私保护和模型安全性,是未来发展的重要挑战

声明:本人的深度学习相关文章全部来自于与AI 的对话整理汇总(学习笔记整理),仅作用于共同学习,不做他用;
持续汇总,持续学习中。。。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/268644.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Topaz Video AI:一键提升视频品质,智能重塑影像魅力 mac/win版

Topaz Video AI是一款革命性的视频智能处理软件,它利用先进的机器学习和人工智能技术,为视频创作者提供了前所未有的视频增强和修复功能。无论您是专业视频编辑师、摄影师,还是热爱视频创作的爱好者,Topaz Video AI都能帮助您轻松…

Mamba与MoE架构强强联合,Mamba-MoE高效提升LLM计算效率和可扩展性

论文题目: MoE-Mamba: Efficient Selective State Space Models with Mixture of Experts 论文链接: https://arxiv.org/abs/2401.04081 代码仓库: GitHub - llm-random/llm-random 作为大型语言模型(LLM)基础架构的后…

数字化转型导师鹏:政府数字化转型政务服务类案例研究

政府数字化转型政务服务类案例研究 课程背景: 很多地方政府存在以下问题: 不清楚标杆省政府数字化转型的政务服务类成功案例 不清楚地级市政府数字化转型的政务服务类成功案例 不清楚县区级政府数字化转型的政务服务类成功案例 课程特色&#x…

【查找算法】二分查找

一:二分查找 1.1 基本概念 二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法。但是,折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列。 1.2 原理 查找的目标数据元…

MySQL 8.0.35 企业版安装和启用TDE插件keyring_encrypted_file

本文主要记录MySQL企业版TDE插件keyring_encrypted_file的安装和使用。 TDE说明 TDE( Transparent Data Encryption,透明数据加密) 指的是无需修改应用就可以实现数据的加解密,在数据写磁盘的时候加密,读的时候自动解密。加密后其他人即使能够访问数据库…

Progressive Widening

下面的解释来源于论文《Monte Carlo Tree Search With Iteratively Refining State Abstractions》,因为这篇论文的重点不是Progressive Widening,所以就不全文学习了,只摘抄其中关于Progressive Widening的部分。 Progressive Widening&…

蓝牙耳机和笔记本电脑配对连接上了,播放设备里没有显示蓝牙耳机这个设备,选不了输出设备

环境: WIN10 杂牌蓝牙耳机6s 问题描述: 蓝牙耳机和笔记本电脑配对连接上了,播放设备里没有显示蓝牙耳机这个设备,选不了输出设备 解决方案: 1.打开设备和打印机,找到这个设备 2.选中这个设备&#…

Nacos配置管理

Nacos除了可以做注册中心,同样可以做配置管理来使用。 统一配置管理 当微服务部署的实例越来越多,达到数十、数百时,逐个修改微服务配置就会让人抓狂,而且很容易出错。我们需要一种统一配置管理方案,可以集中管理所有…

5.测试教程 - 进阶篇

文章目录 1.按测试对像划分1.1**界面测试**1.2**可靠性测试**1.3**容错性测试**1.4**文档测试**1.5**兼容性测试**1.6**易用性测试**1.7**安装卸载测试**1.8**安全测试**1.9**性能测试**1.10**内存泄漏测试** 2.按是否查看代码划分2.1黑盒测试(Black-box Testing)2.2白盒测试(W…

Scratch 第十六课-弹珠台游戏

第十六课-弹珠台游戏 大家好,今天我们一起做一款弹珠台scratch游戏,我们也可以叫它弹球游戏!这款游戏在刚出来的时候非常火爆。小朋友们要认真学习下! 这节课的学习目标 物体碰撞如何处理转向问题。复习键盘对角色的控制方式。…

软件开发人员从0到1实现物联网项目:技术调研

前言 春节返乡之际,发现老家县城竟然开了近十家棋牌室。巧的是朋友也有意涉足,便咨询我自助棋牌室的软件投入成本。作为程序员的我,在思考了自助棋牌室背后的技术需求后,嗅到了一丝丝商机:何不自己开发一个自助棋牌室…

YOLOV9训练集制作+Train+Val记录

一、YOLO数据集格式分布 在YOLO中,数据集的分布如图,在dataset文件夹下有imags(图片)和labels(标签)。在images和labels文件夹下又分别存放三个文件夹,分别对应测试集、训练集、验证集&#xff…

2023全球软件开发大会-上海站:探索技术前沿,共筑未来软件生态(附大会核心PPT下载)

随着信息技术的迅猛发展,全球软件开发大会(QCon)已成为软件行业最具影响力的年度盛会之一。2023年,QCon再次来到上海,汇聚了众多业界精英、技术领袖和开发者,共同探讨软件开发的最新趋势和实践。 一、大会…

Frontend - Boostrap 消息弹窗

目录 一、下载 (一)中文官网 (二)bootstrap v3 依赖 jQuery 插件 二、解压并安装 (一)解压 1. 压缩包解压 2. 简化文件 (二)安装 三、配置 (一)bas…

【重要公告】对BSV警报系统AS的释义

​​发表时间:2024年2月15日 由BSV区块链协会开发并管理的BSV警报系统(Alert System,以下简称“AS”)是BSV网络的重要组件。它是一个复杂的系统,主要职能是在BSV区块链网络内发布信息。这些信息通常与网络访问规则NAR相…

深入了解 JavaScript 混淆加密和环境检测

JavaScript混淆加密是一种通过修改代码结构和命名约定来增加代码的复杂性,使其难以被理解和逆向工程的技术。在这篇文章中,我们将深入探讨JS混淆加密的一些逻辑,并介绍如何通过环境检测来提高代码的安全性。我们将使用案例代码演示这些概念。…

osi模型,tcp/ip模型(名字由来+各层介绍+中间设备介绍)

目录 网络协议如何分层 引入 osi模型 tcp/ip模型 引入 命名由来 介绍 物理层 数据链路层 网络层 传输层 应用层 中间设备 网络协议如何分层 引入 我们已经知道了网络协议是层状结构,接下来就来了解了解下网络协议如何分层 常见的网络协议分层模型是OSI模型 和 …

C++之结构体以及通讯录管理系统

1,结构体基本概念 结构体属于自定义的数据概念,允许用户存储不同的数据类型 2,结构体的定义和使用 语法:struct 结构体名{ 结构体成员列表}; 通过结构体创建变量的方式有三种: 1,struct …

python+Django+Neo4j中医药知识图谱与智能问答平台

文章目录 项目地址基础准备正式运行 项目地址 https://github.com/ZhChessOvO/ZeLanChao_KGQA 基础准备 请确保您的电脑有以下环境:python3,neo4j 在安装目录下进入cmd,输入指令“pip install -r requirement.txt”,安装需要的python库 打…